


Langkah penguatan AI Apple! Mendakwa model sisi perantinya berprestasi lebih baik daripada GPT-4
Berita 2 April, menurut laporan media, dalam kertas baru-baru ini, pasukan penyelidik Apple mendakwa bahawa mereka mencadangkan model ReALM yang boleh dijalankan pada bahagian peranti Model ini boleh mengatasi GPT-4 dalam beberapa aspek.
Jumlah parameter ReALM masing-masing ialah 80M, 250M, 1B dan 3B Ia sangat kecil dan sesuai untuk dijalankan pada telefon mudah alih, tablet dan peranti lain.
ReALM terutamanya mengkaji proses membenarkan AI mengenal pasti hubungan rujukan antara pelbagai entiti (seperti nama, tempat, organisasi, dll.) yang disebut dalam teks.
Kertas membahagikan entiti kepada tiga jenis:
Entiti Pada skrin: merujuk kepada kandungan yang sedang dipaparkan pada skrin pengguna.
Entiti Perbualan: merujuk kepada kandungan yang berkaitan dengan dialog. Contohnya, jika pengguna menyebut "panggil ibu", maka maklumat hubungan ibu ialah entiti perbualan.
Entiti Latar Belakang: merujuk kepada entiti yang mungkin tidak berkaitan secara langsung dengan operasi semasa pengguna atau kandungan yang dipaparkan pada skrin, seperti muzik yang dimainkan atau penggera yang akan berbunyi.
Makalah itu menyatakan bahawa walaupun model bahasa yang besar telah terbukti sangat berkebolehan dalam pelbagai tugas, potensinya masih belum direalisasikan apabila digunakan untuk menyelesaikan masalah rujukan entiti bukan dialog (seperti entiti skrin, entiti latar belakang) Mengambil kesempatan.
Dan ReALM ialah kaedah baharu sepenuhnya, dengan membandingkan prestasinya dengan GPT-3.5 dan GPT-4, menunjukkan bahawa model terkecil berprestasi setanding dengan GPT-4, manakala model yang lebih besar jauh melebihi GPT- 4.
Penyelidikan ini dijangka akan digunakan untuk menambah baik pembantu Siri pada peranti Apple, membantu Siri lebih memahami dan mengendalikan konteks dalam pertanyaan pengguna.
Atas ialah kandungan terperinci Langkah penguatan AI Apple! Mendakwa model sisi perantinya berprestasi lebih baik daripada GPT-4. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Apabila menukar rentetan ke objek dalam vue.js, json.parse () lebih disukai untuk rentetan json standard. Untuk rentetan JSON yang tidak standard, rentetan boleh diproses dengan menggunakan ungkapan biasa dan mengurangkan kaedah mengikut format atau url yang dikodkan. Pilih kaedah yang sesuai mengikut format rentetan dan perhatikan isu keselamatan dan pengekodan untuk mengelakkan pepijat.

Vue dan Element-UI cascaded drop-down boxes v-model mengikat titik pit biasa: V-model mengikat array yang mewakili nilai yang dipilih pada setiap peringkat kotak pemilihan cascaded, bukan rentetan; Nilai awal pilihan terpilih mestilah array kosong, tidak batal atau tidak jelas; Pemuatan data dinamik memerlukan penggunaan kemahiran pengaturcaraan tak segerak untuk mengendalikan kemas kini data secara tidak segerak; Untuk set data yang besar, teknik pengoptimuman prestasi seperti menatal maya dan pemuatan malas harus dipertimbangkan.

Untuk menetapkan masa untuk Vue Axios, kita boleh membuat contoh Axios dan menentukan pilihan masa tamat: dalam tetapan global: vue.prototype. $ Axios = axios.create ({timeout: 5000}); Dalam satu permintaan: ini. $ axios.get ('/api/pengguna', {timeout: 10000}).

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Cecair memproses 7 juta rekod dan membuat peta interaktif dengan teknologi geospatial. Artikel ini meneroka cara memproses lebih dari 7 juta rekod menggunakan Laravel dan MySQL dan mengubahnya menjadi visualisasi peta interaktif. Keperluan Projek Cabaran Awal: Ekstrak Wawasan berharga menggunakan 7 juta rekod dalam pangkalan data MySQL. Ramai orang mula -mula mempertimbangkan bahasa pengaturcaraan, tetapi mengabaikan pangkalan data itu sendiri: Bolehkah ia memenuhi keperluan? Adakah penghijrahan data atau pelarasan struktur diperlukan? Bolehkah MySQL menahan beban data yang besar? Analisis awal: Penapis utama dan sifat perlu dikenalpasti. Selepas analisis, didapati bahawa hanya beberapa atribut yang berkaitan dengan penyelesaiannya. Kami mengesahkan kemungkinan penapis dan menetapkan beberapa sekatan untuk mengoptimumkan carian. Carian Peta Berdasarkan Bandar

Ringkasan: Terdapat kaedah berikut untuk menukar array rentetan vue.js ke dalam tatasusunan objek: Kaedah asas: Gunakan fungsi peta yang sesuai dengan data yang diformat biasa. Permainan lanjutan: Menggunakan ungkapan biasa boleh mengendalikan format yang kompleks, tetapi mereka perlu ditulis dengan teliti dan dipertimbangkan. Pengoptimuman Prestasi: Memandangkan banyak data, operasi tak segerak atau perpustakaan pemprosesan data yang cekap boleh digunakan. Amalan Terbaik: Gaya Kod Jelas, Gunakan nama dan komen pembolehubah yang bermakna untuk memastikan kod ringkas.

Jurutera Backend Senior Remote Company Kekosongan Syarikat: Lokasi Lokasi: Jauh Pejabat Jauh Jenis: Gaji sepenuh masa: $ 130,000- $ 140,000 Penerangan Pekerjaan Mengambil bahagian dalam penyelidikan dan pembangunan aplikasi mudah alih Circle dan ciri-ciri berkaitan API awam yang meliputi keseluruhan kitaran hayat pembangunan perisian. Tanggungjawab utama kerja pembangunan secara bebas berdasarkan rubyonrails dan bekerjasama dengan pasukan react/redux/relay front-end. Membina fungsi teras dan penambahbaikan untuk aplikasi web dan bekerjasama rapat dengan pereka dan kepimpinan sepanjang proses reka bentuk berfungsi. Menggalakkan proses pembangunan positif dan mengutamakan kelajuan lelaran. Memerlukan lebih daripada 6 tahun backend aplikasi web kompleks

Terdapat banyak sebab mengapa permulaan MySQL gagal, dan ia boleh didiagnosis dengan memeriksa log ralat. Penyebab umum termasuk konflik pelabuhan (periksa penghunian pelabuhan dan ubah suai konfigurasi), isu kebenaran (periksa keizinan pengguna yang menjalankan perkhidmatan), ralat fail konfigurasi (periksa tetapan parameter), rasuah direktori data (memulihkan data atau membina semula ruang meja), isu ruang jadual InnoDB (semak fail ibdata1) Apabila menyelesaikan masalah, anda harus menganalisisnya berdasarkan log ralat, cari punca utama masalah, dan mengembangkan tabiat sandaran data secara teratur untuk mencegah dan menyelesaikan masalah.
