


Berkongsi petua praktikal untuk membaca data CSV dalam Python
Terdapat dua cara untuk membaca data CSV dalam Python: modul csv terbina dalam, yang sesuai untuk fail CSV kecil dan mengulangi baris demi baris data pustaka Pandas menyediakan fungsi read_csv(), yang boleh memuatkan data CSV dengan mudah; DataFrame untuk pemprosesan.
Berkongsi petua praktikal untuk membaca data CSV dalam Python
Dalam sains data dan pembelajaran mesin, kita selalunya perlu membaca data daripada fail CSV (Comma Separated Values). Python menyediakan beberapa fungsi dan perpustakaan terbina dalam untuk tujuan ini. Tutorial ini akan meneroka cara yang berbeza untuk membaca data CSV dalam Python dan memberikan contoh praktikal.
Fungsi terbina dalam
Untuk fail CSV kecil, kami boleh menggunakan modul csv
terbina dalam. Ia menyediakan fungsi [reader()
](https://docs.python.org/3/library/csv.html#csv.reader) untuk mengulang data CSV baris demi baris. csv
模块。它提供了一个 [reader()
](https://docs.python.org/3/library/csv.html#csv.reader) 函数,用于按行迭代 CSV 数据。
import csv with open('data.csv', 'r') as file: reader = csv.reader(file) for row in reader: # 处理每一行数据
Pandas 库
Pandas 是用于数据分析和操作的流行库。它提供了一个 [read_csv()
](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html) 函数,可以轻松地将 CSV 数据加载到 DataFrame 中。DataFrame 是一种类似于表格的数据结构,易于处理和操作。
import pandas as pd df = pd.read_csv('data.csv') # 访问 DataFrame 中的数据
实战案例
考虑一个名为 data.csv
name,age John,25 Jane,30
Perpustakaan Pandas
Pandas ialah perpustakaan yang popular untuk analisis dan manipulasi data. Ia menyediakan fungsi [read_csv()
](https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html) untuk memuatkan data CSV ke tengah DataFrame dengan mudah. DataFrame ialah struktur data seperti jadual yang mudah diproses dan dimanipulasi. import csv with open('data.csv', 'r') as file: reader = csv.reader(file) for row in reader: print(row)
Kes praktikal
Pertimbangkan fail CSV bernamadata.csv
yang mengandungi data berikut: ['name', 'age'] ['John', '25'] ['Jane', '30']
Baca data menggunakan fungsi terbina dalam:
import pandas as pd df = pd.read_csv('data.csv') print(df)
name age 0 John 25 1 Jane 30
Atas ialah kandungan terperinci Berkongsi petua praktikal untuk membaca data CSV dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PS "Memuatkan" Masalah disebabkan oleh akses sumber atau masalah pemprosesan: Kelajuan bacaan cakera keras adalah perlahan atau buruk: Gunakan CrystaldiskInfo untuk memeriksa kesihatan cakera keras dan menggantikan cakera keras yang bermasalah. Memori yang tidak mencukupi: Meningkatkan memori untuk memenuhi keperluan PS untuk imej resolusi tinggi dan pemprosesan lapisan kompleks. Pemandu kad grafik sudah lapuk atau rosak: Kemas kini pemandu untuk mengoptimumkan komunikasi antara PS dan kad grafik. Laluan fail terlalu panjang atau nama fail mempunyai aksara khas: Gunakan laluan pendek dan elakkan aksara khas. Masalah PS sendiri: Pasang semula atau membaiki pemasang PS.

PS yang tersangkut pada "memuatkan" apabila boot boleh disebabkan oleh pelbagai sebab: Lumpuhkan plugin yang korup atau bercanggah. Padam atau namakan semula fail konfigurasi yang rosak. Tutup program yang tidak perlu atau menaik taraf memori untuk mengelakkan memori yang tidak mencukupi. Naik taraf ke pemacu keadaan pepejal untuk mempercepatkan bacaan cakera keras. Pasang semula PS untuk membaiki fail sistem rasuah atau isu pakej pemasangan. Lihat maklumat ralat semasa proses permulaan analisis log ralat.

"Memuatkan" gagap berlaku apabila membuka fail pada PS. Sebab-sebabnya mungkin termasuk: fail yang terlalu besar atau rosak, memori yang tidak mencukupi, kelajuan cakera keras perlahan, masalah pemacu kad grafik, versi PS atau konflik plug-in. Penyelesaiannya ialah: Semak saiz fail dan integriti, tingkatkan memori, menaik taraf cakera keras, mengemas kini pemacu kad grafik, menyahpasang atau melumpuhkan pemalam yang mencurigakan, dan memasang semula PS. Masalah ini dapat diselesaikan dengan berkesan dengan memeriksa secara beransur -ansur dan memanfaatkan tetapan prestasi PS yang baik dan membangunkan tabiat pengurusan fail yang baik.

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Kunci kawalan bulu adalah memahami sifatnya secara beransur -ansur. PS sendiri tidak menyediakan pilihan untuk mengawal lengkung kecerunan secara langsung, tetapi anda boleh melaraskan radius dan kelembutan kecerunan dengan pelbagai bulu, topeng yang sepadan, dan pilihan halus untuk mencapai kesan peralihan semula jadi.

MySQL mempunyai versi komuniti percuma dan versi perusahaan berbayar. Versi komuniti boleh digunakan dan diubahsuai secara percuma, tetapi sokongannya terhad dan sesuai untuk aplikasi dengan keperluan kestabilan yang rendah dan keupayaan teknikal yang kuat. Edisi Enterprise menyediakan sokongan komersil yang komprehensif untuk aplikasi yang memerlukan pangkalan data yang stabil, boleh dipercayai, berprestasi tinggi dan bersedia membayar sokongan. Faktor yang dipertimbangkan apabila memilih versi termasuk kritikal aplikasi, belanjawan, dan kemahiran teknikal. Tidak ada pilihan yang sempurna, hanya pilihan yang paling sesuai, dan anda perlu memilih dengan teliti mengikut keadaan tertentu.

Pengoptimuman prestasi MySQL perlu bermula dari tiga aspek: konfigurasi pemasangan, pengindeksan dan pengoptimuman pertanyaan, pemantauan dan penalaan. 1. Selepas pemasangan, anda perlu menyesuaikan fail my.cnf mengikut konfigurasi pelayan, seperti parameter innodb_buffer_pool_size, dan tutup query_cache_size; 2. Buat indeks yang sesuai untuk mengelakkan indeks yang berlebihan, dan mengoptimumkan pernyataan pertanyaan, seperti menggunakan perintah menjelaskan untuk menganalisis pelan pelaksanaan; 3. Gunakan alat pemantauan MySQL sendiri (ShowProcessList, ShowStatus) untuk memantau kesihatan pangkalan data, dan kerap membuat semula dan mengatur pangkalan data. Hanya dengan terus mengoptimumkan langkah -langkah ini, prestasi pangkalan data MySQL diperbaiki.

PS Feathering adalah kesan kabur tepi imej, yang dicapai dengan purata piksel berwajaran di kawasan tepi. Menetapkan jejari bulu dapat mengawal tahap kabur, dan semakin besar nilai, semakin kaburnya. Pelarasan fleksibel radius dapat mengoptimumkan kesan mengikut imej dan keperluan. Sebagai contoh, menggunakan jejari yang lebih kecil untuk mengekalkan butiran apabila memproses foto watak, dan menggunakan radius yang lebih besar untuk mewujudkan perasaan kabur ketika memproses karya seni. Walau bagaimanapun, perlu diperhatikan bahawa terlalu besar jejari boleh dengan mudah kehilangan butiran kelebihan, dan terlalu kecil kesannya tidak akan jelas. Kesan bulu dipengaruhi oleh resolusi imej dan perlu diselaraskan mengikut pemahaman imej dan kesan genggaman.
