甲骨文与MySQL谈判 收购矛头开始指向开源_MySQL
甲骨文
【赛迪网讯】2月17日消息,甲骨文周三宣布收购瑞典电信基础构架软件商HotSip,但未公布具体的交易额。由此不难看出,甲骨文的疯狂并购远远没有结束。据国外杂志《红鲱鱼》报道,收购HotSip公司将进一步巩固甲骨文在电信市场的地位,从容应对此前已进入该市场的BEA系统公司的竞争威胁。与此同时,甲骨文还与开源数据库服务商MySQL展开谈判,但MySQL公司CEO马丁-米库斯表示,MySQL已拒绝了甲骨文的收购 要约,因为该公司希望保持独立。本周早些时候,甲骨文宣布建立1850万的风险资本基金。甲骨文一位发言人不愿对收购MySQL事宜发表评论。
本周初,甲骨文收购了位于加州的开源数据库提供商Sleepycat。近期的一系列举动表明,甲骨文已准备拥抱开源商业模式,与传统的商业软件不同,开源软件大多是免费的,厂商的收入主要来自维护和技术支持服务,然而到目前为止,商业软件仍然是甲骨文的主要收入来源。
甲骨文的最新战略显然与其CEO拉里-埃利森去年九月份的声明不相符合,埃利森当时表示,经过一年的突击收购之后,甲骨文将放缓收购步伐。甲骨文的新战略显然已有所变化,与以往专注于商务应用不同,现在更加倾向于开源及商务智能领域。(n102)
作者:啸风

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Anotasi teks ialah kerja label atau teg yang sepadan dengan kandungan tertentu dalam teks. Tujuan utamanya adalah untuk memberikan maklumat tambahan kepada teks untuk analisis dan pemprosesan yang lebih mendalam, terutamanya dalam bidang kecerdasan buatan. Anotasi teks adalah penting untuk tugas pembelajaran mesin yang diawasi dalam aplikasi kecerdasan buatan. Ia digunakan untuk melatih model AI untuk membantu memahami maklumat teks bahasa semula jadi dengan lebih tepat dan meningkatkan prestasi tugasan seperti klasifikasi teks, analisis sentimen dan terjemahan bahasa. Melalui anotasi teks, kami boleh mengajar model AI untuk mengenali entiti dalam teks, memahami konteks dan membuat ramalan yang tepat apabila data baharu yang serupa muncul. Artikel ini terutamanya mengesyorkan beberapa alat anotasi teks sumber terbuka yang lebih baik. 1.LabelStudiohttps://github.com/Hu

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Khalayak yang biasa dengan "Westworld" tahu bahawa rancangan ini terletak di taman tema dewasa berteknologi tinggi yang besar di dunia masa hadapan Robot mempunyai keupayaan tingkah laku yang serupa dengan manusia, dan boleh mengingati apa yang mereka lihat dan dengar, serta mengulangi jalan cerita teras. Setiap hari, robot ini akan ditetapkan semula dan dikembalikan kepada keadaan asalnya Selepas keluaran kertas kerja Stanford "Generative Agents: Interactive Simulacra of Human Behavior", senario ini tidak lagi terhad kepada filem dan siri TV telah berjaya menghasilkan semula ini tempat kejadian di "Bandar Maya" Smallville 》Alamat kertas peta gambaran keseluruhan: https://arxiv.org/pdf/2304.03442v1.pdf

Teknologi pengesanan dan pengecaman muka adalah teknologi yang agak matang dan digunakan secara meluas. Pada masa ini, bahasa aplikasi Internet yang paling banyak digunakan ialah JS Melaksanakan pengesanan muka dan pengecaman pada bahagian hadapan Web mempunyai kelebihan dan kekurangan berbanding dengan pengecaman muka bahagian belakang. Kelebihan termasuk mengurangkan interaksi rangkaian dan pengecaman masa nyata, yang sangat memendekkan masa menunggu pengguna dan meningkatkan pengalaman pengguna termasuk: terhad oleh saiz model, ketepatannya juga terhad. Bagaimana untuk menggunakan js untuk melaksanakan pengesanan muka di web? Untuk melaksanakan pengecaman muka di Web, anda perlu biasa dengan bahasa dan teknologi pengaturcaraan yang berkaitan, seperti JavaScript, HTML, CSS, WebRTC, dll. Pada masa yang sama, anda juga perlu menguasai visi komputer yang berkaitan dan teknologi kecerdasan buatan. Perlu diingat bahawa kerana reka bentuk bahagian Web

SOTA baharu untuk keupayaan memahami dokumen multimodal! Pasukan Alibaba mPLUG mengeluarkan kerja sumber terbuka terkini mPLUG-DocOwl1.5, yang mencadangkan satu siri penyelesaian untuk menangani empat cabaran utama pengecaman teks imej resolusi tinggi, pemahaman struktur dokumen am, arahan mengikut dan pengenalan pengetahuan luaran. Tanpa berlengah lagi, mari kita lihat kesannya dahulu. Pengecaman satu klik dan penukaran carta dengan struktur kompleks ke dalam format Markdown: Carta gaya berbeza tersedia: Pengecaman dan kedudukan teks yang lebih terperinci juga boleh dikendalikan dengan mudah: Penjelasan terperinci tentang pemahaman dokumen juga boleh diberikan: Anda tahu, "Pemahaman Dokumen " pada masa ini Senario penting untuk pelaksanaan model bahasa yang besar. Terdapat banyak produk di pasaran untuk membantu pembacaan dokumen. Sesetengah daripada mereka menggunakan sistem OCR untuk pengecaman teks dan bekerjasama dengan LLM untuk pemprosesan teks.

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Izinkan saya memperkenalkan kepada anda projek sumber terbuka AIGC terkini-AnimagineXL3.1. Projek ini adalah lelaran terkini model teks-ke-imej bertema anime, yang bertujuan untuk menyediakan pengguna pengalaman penjanaan imej anime yang lebih optimum dan berkuasa. Dalam AnimagineXL3.1, pasukan pembangunan menumpukan pada mengoptimumkan beberapa aspek utama untuk memastikan model mencapai tahap prestasi dan kefungsian yang baharu. Pertama, mereka mengembangkan data latihan untuk memasukkan bukan sahaja data watak permainan daripada versi sebelumnya, tetapi juga data daripada banyak siri anime terkenal lain ke dalam set latihan. Langkah ini memperkayakan pangkalan pengetahuan model, membolehkannya memahami pelbagai gaya dan watak anime dengan lebih lengkap. AnimagineXL3.1 memperkenalkan set teg khas dan estetika baharu

Alamat kertas: https://arxiv.org/abs/2307.09283 Alamat kod: https://github.com/THU-MIG/RepViTRepViT berprestasi baik dalam seni bina ViT mudah alih dan menunjukkan kelebihan yang ketara. Seterusnya, kami meneroka sumbangan kajian ini. Disebutkan dalam artikel bahawa ViT ringan biasanya berprestasi lebih baik daripada CNN ringan pada tugas visual, terutamanya disebabkan oleh modul perhatian diri berbilang kepala (MSHA) mereka yang membolehkan model mempelajari perwakilan global. Walau bagaimanapun, perbezaan seni bina antara ViT ringan dan CNN ringan belum dikaji sepenuhnya. Dalam kajian ini, penulis menyepadukan ViT ringan ke dalam yang berkesan
