Jadual Kandungan
Ketersediaan data terhad:
Isu Kualiti dan Bias Data:
Kurang kebolehjelasan:
Penyesuaian Terlebih dan Pengitlakan:
Sumber dan kebolehskalaan pengkomputeran:
Kesan Etika dan Sosial:
Kurang kepakaran domain dan pemahaman latar belakang:
Kerentanan Keselamatan dan Serangan Adversarial:
Pembelajaran dan Penyesuaian Berterusan:
Pematuhan Peraturan dan Undang-undang:
Rumah Peranti teknologi AI Sepuluh batasan kecerdasan buatan

Sepuluh batasan kecerdasan buatan

Apr 26, 2024 pm 05:52 PM
AI Kerentanan keselamatan

Dalam bidang inovasi teknologi, kecerdasan buatan (AI) merupakan salah satu perkembangan yang paling transformatif dan menjanjikan pada zaman kita. Kecerdasan buatan telah merevolusikan banyak industri, daripada penjagaan kesihatan dan kewangan kepada pengangkutan dan hiburan, dengan keupayaannya untuk menganalisis sejumlah besar data, belajar daripada corak dan membuat keputusan yang bijak. Walau bagaimanapun, di sebalik kemajuannya yang luar biasa, AI juga menghadapi had dan cabaran ketara yang menghalangnya daripada mencapai potensi penuhnya. Dalam artikel ini, kami akan menyelidiki sepuluh batasan teratas kecerdasan buatan, mendedahkan batasan yang dihadapi oleh pembangun, penyelidik dan pengamal dalam bidang ini. Dengan memahami cabaran ini, adalah mungkin untuk menavigasi kerumitan pembangunan AI, mengurangkan risiko dan membuka jalan bagi kemajuan teknologi AI yang bertanggungjawab dan beretika.

Sepuluh batasan kecerdasan buatan

Ketersediaan data terhad:

Pembangunan kecerdasan buatan bergantung pada kecukupan data. Salah satu keperluan asas untuk melatih model kecerdasan buatan ialah akses kepada set data yang besar dan pelbagai. Walau bagaimanapun, dalam kebanyakan kes, data yang berkaitan mungkin terhad, tidak lengkap atau berat sebelah, menghalang prestasi dan keupayaan generalisasi sistem AI.

Isu Kualiti dan Bias Data:

Algoritma AI terdedah kepada berat sebelah dan ketidaktepatan yang terdapat dalam data latihan, yang membawa kepada keputusan berat sebelah dan proses membuat keputusan yang cacat. Data sejarah, stereotaip sosial atau kesilapan anotasi manusia boleh mewujudkan berat sebelah yang membawa kepada hasil yang tidak adil atau diskriminasi, terutamanya dalam aplikasi sensitif seperti penjagaan kesihatan, keadilan jenayah dan kewangan. Menangani berat sebelah data dan memastikan kualiti data adalah cabaran berterusan dalam pembangunan AI.

Kurang kebolehjelasan:

"Kotak hitam" ialah istilah yang biasa digunakan untuk merujuk kepada kebanyakan model kecerdasan buatan, terutamanya model pembelajaran mendalam. Kerana proses membuat keputusannya sememangnya kompleks dan misteri. Kunci untuk memenangi kepercayaan dan pengiktirafan pengguna dan pihak berkepentingan ialah memahami cara model AI membuat ramalan atau memberikan cadangan.

Penyesuaian Terlebih dan Pengitlakan:

Model AI yang dilatih pada set data tertentu dengan mudah boleh melepaskan diri daripada senario sebenar atau contoh data yang tidak kelihatan, satu amalan yang dipanggil overfitting. Akibat fenomena ini termasuk prestasi yang lemah, ramalan yang tidak boleh dipercayai dan kegagalan sistem AI praktikal untuk berfungsi dengan baik.

Sumber dan kebolehskalaan pengkomputeran:

Melatih model kecerdasan buatan memerlukan banyak pengkomputeran, termasuk GPU, CPU dan TPU, manakala penggunaan memerlukan kumpulan sumber teragih yang besar.

Kesan Etika dan Sosial:

Penggunaan teknologi AI menimbulkan prinsip etika dan isu sosial seperti privasi, keselamatan, keadilan (atau keadilan), dan konsep akauntabiliti atau ketelusan. Masalahnya ialah teknologi ini boleh membawa kepada dasar pengangguran berat sebelah yang berkembang menjadi robot autonomi dengan sistem senjata termaju, di samping kaedah pemantauan negara, mewujudkan kesukaran yang ketara bagi pengawal selia, penggubal dasar dan komuniti pada umumnya.

Kurang kepakaran domain dan pemahaman latar belakang:

Sistem AI tidak boleh berfungsi dengan cekap dalam bidang yang memerlukan kepakaran domain atau pemahaman latar belakang. Memahami nuansa, kehalusan dan maklumat khusus konteks adalah mencabar untuk algoritma AI, terutamanya dalam persekitaran yang dinamik dan kompleks.

Kerentanan Keselamatan dan Serangan Adversarial:

Sistem AI terdedah kepada pelbagai ancaman keselamatan dan serangan musuh, di mana aktor berniat jahat memanipulasi input atau mengeksploitasi kelemahan untuk menipu atau merosakkan model AI. Serangan musuh boleh membawa kepada ramalan navigasi yang salah, kegagalan sistem atau kebocoran privasi, sekali gus menjejaskan kepercayaan dan kebolehpercayaan sistem AI.

Pembelajaran dan Penyesuaian Berterusan:

Sistem AI selalunya perlu belajar dan menyesuaikan diri secara berterusan untuk kekal berkesan dalam persekitaran yang dinamik dan berubah. Walau bagaimanapun, mengemas kini dan melatih semula model AI dengan data baharu atau mengubah persekitaran boleh menjadi mencabar dan memerlukan sumber.

Pematuhan Peraturan dan Undang-undang:

Teknologi Kepintaran Buatan tertakluk kepada pelbagai rangka kerja kawal selia, keperluan undang-undang dan piawaian industri yang mengawal pembangunan, penggunaan dan penggunaannya. Pematuhan terhadap peraturan seperti GDPR, HIPAA dan CCPA, serta piawaian dan garis panduan khusus industri, adalah penting untuk memastikan penggunaan AI yang bertanggungjawab dan beretika.

Kesimpulannya, walaupun kecerdasan buatan memegang janji besar dalam memajukan teknologi dan menyelesaikan masalah yang kompleks, ia bukan tanpa batasan dan cabaran. Daripada ketersediaan data dan berat sebelah kepada kebolehjelasan dan keselamatan, menangani sepuluh had teratas AI adalah penting untuk merealisasikan potensi penuhnya sambil mengurangkan potensi risiko dan memastikan pembangunan dan penggunaan yang bertanggungjawab.

Atas ialah kandungan terperinci Sepuluh batasan kecerdasan buatan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. SK Hynix akan memaparkan produk berkaitan AI baharu pada 6 Ogos: HBM3E 12 lapisan, NAND 321 tinggi, dsb. Aug 01, 2024 pm 09:40 PM

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

See all articles