用Python程序抓取网页的HTML信息的一个小实例
抓取网页数据的思路有好多种,一般有:直接代码请求http、模拟浏览器请求数据(通常需要登录验证)、控制浏览器实现数据抓取等。这篇不考虑复杂情况,放一个读取简单网页数据的小例子:
目标数据
将ittf网站上这个页面上所有这些选手的超链接保存下来。
数据请求
真的很喜欢符合人类思维的库,比如requests,如果是要直接拿网页文本,一句话搞定:
doc = requests.get(url).text
解析html获得数据
以beautifulsoup为例,包含获取标签、链接,以及根据html层次结构遍历等方法。参考见这里。下面这个片段,从ittf网站上获取指定页面上指定位置的链接。
url = 'http://www.ittf.com/ittf_ranking/WR_Table_3_A2.asp?Age_category_1=&Age_category_2=&Age_category_3=&Age_category_4=&Age_category_5=&Category=100W&Cont=&Country=&Gender=W&Month1=4&Year1=2015&s_Player_Name=&Formv_WR_Table_3_Page='+str(page) doc = requests.get(url).text soup = BeautifulSoup(doc) atags = soup.find_all('a') rank_link_pre = 'http://www.ittf.com/ittf_ranking/' mlfile = open(linkfile,'a') for atag in atags: #print atag if atag!=None and atag.get('href') != None: if "WR_Table_3_A2_Details.asp" in atag['href']: link = rank_link_pre + atag['href'] links.append(link) mlfile.write(link+'\n') print 'fetch link: '+link mlfile.close()

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Untuk membaca giliran dari Redis, anda perlu mendapatkan nama giliran, membaca unsur -unsur menggunakan arahan LPOP, dan memproses barisan kosong. Langkah-langkah khusus adalah seperti berikut: Dapatkan nama giliran: Namakannya dengan awalan "giliran:" seperti "giliran: my-queue". Gunakan arahan LPOP: Keluarkan elemen dari kepala barisan dan kembalikan nilainya, seperti LPOP Queue: My-Queue. Memproses Baris kosong: Jika barisan kosong, LPOP mengembalikan nihil, dan anda boleh menyemak sama ada barisan wujud sebelum membaca elemen.

Soalan: Bagaimana untuk melihat versi pelayan Redis? Gunakan alat perintah Redis-cli -version untuk melihat versi pelayan yang disambungkan. Gunakan arahan pelayan INFO untuk melihat versi dalaman pelayan dan perlu menghuraikan dan mengembalikan maklumat. Dalam persekitaran kluster, periksa konsistensi versi setiap nod dan boleh diperiksa secara automatik menggunakan skrip. Gunakan skrip untuk mengautomasikan versi tontonan, seperti menyambung dengan skrip Python dan maklumat versi percetakan.

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

Tetapan saiz memori Redis perlu mempertimbangkan faktor -faktor berikut: Jumlah data dan trend pertumbuhan: Anggarkan saiz dan kadar pertumbuhan data yang disimpan. Jenis Data: Jenis yang berbeza (seperti senarai, hash) menduduki memori yang berbeza. Dasar caching: cache penuh, cache separa, dan dasar pemisahan mempengaruhi penggunaan memori. Puncak Perniagaan: Tinggalkan memori yang cukup untuk menangani puncak lalu lintas.

Redis Kegigihan akan mengambil ingatan tambahan, RDB sementara meningkatkan penggunaan memori apabila menjana snapshot, dan AOF terus mengambil ingatan apabila memasuki log. Faktor yang mempengaruhi termasuk jumlah data, dasar kegigihan dan konfigurasi REDIS. Untuk mengurangkan kesan, anda boleh mengkonfigurasi dasar snapshot RDB, mengoptimumkan konfigurasi AOF, menaik taraf perkakasan dan memantau penggunaan memori. Selain itu, adalah penting untuk mencari keseimbangan antara prestasi dan keselamatan data.
