Python中的赋值、浅拷贝、深拷贝介绍
和很多语言一样,Python中也分为简单赋值、浅拷贝、深拷贝这几种“拷贝”方式。
在学习过程中,一开始对浅拷贝理解很模糊。不过经过一系列的实验后,我发现对这三者的概念有了进一步的了解。
一、赋值
赋值算是这三种操作中最常见的了,我们通过一些例子来分析下赋值操作:
str例
代码如下:
>>> a = 'hello'
>>> b = 'hello'
>>> c = a
>>> [id(x) for x in a,b,c]
[4404120000, 4404120000, 4404120000]
由以上指令中,我们可以发现a, b, c三者的地址是一样的。所以以上赋值的操作就相当于c = a = b = 'hello'。
赋值是系统先给一个变量或者对象(这里是'hello')分配了内存,然后再将地址赋给a, b, c。所以它们的地址是相同的。
list例
代码如下:
>>> a = ['hello']
>>> b = ['hello']
>>> c = a
>>> [id(x) for x in a,b,c]
[4403975952, 4404095096, 4403975952]
但是这种情况却不一样了,a和b的地址不同。为何?
因为str是不可变的,所以同样是'hello'只有一个地址,但是list是可变的,所以必须分配两个地址。
这时,我们希望探究以上两种情况如果 修改值 会如何?
str例
代码如下:
>>> a = 'world'
>>> [id(x) for x in a,b,c]
[4404120432, 4404120000, 4404120000]
>>> print a, b, c
world hello hello
这时a的地址和值变了,但是b, c地址和值都未变。因为str的不可变性,a要重新赋值则需重新开辟内存空间,所以a的值改变,a指向的地址改变。b, c由于'hello'的不变性,不会发生改变。
list例
代码如下:
>>> a[0] = 'world'
>>> [id(x) for x in a,b,c]
[4403975952, 4404095096, 4403975952]
>>> print a, b, c
['world'] ['hello'] ['world']
这时a, c的值和地址均改变,但二者仍相同,b不改变。由于list的可变性,所以修改list的值不需要另外开辟空间,只需修改原地址的值。所以a, c均改变。
在了解了以上的不同点之后,我们就能很好地分析浅拷贝和深拷贝了。
我们均用list作为例子。
二、浅拷贝
代码如下:
>>> a = ['hello', [123, 234]]
>>> b = a[:]
>>> [id(x) for x in a,b]
[4496003656, 4496066752]
>>> [id(x) for x in a]
[4496091584, 4495947536]
>>> [id(x) for x in b]
[4496091584, 4495947536]
Line3,4可以看出a, b地址不同,这符合list是可变的,应开辟不同空间。那浅拷贝就是拷贝了一个副本吗?再看Line5 - 8,我们发现a, b中元素的地址是相同的。如果说字符串'hello'地址一致还能理解,但是第二个元素是list地址仍一致。 这就说明了浅拷贝的特点,只是将容器内的元素的地址复制了一份 。
接着我们尝试修改a, b中的值:
代码如下:
>>> a[0] = 'world'
>>> a[1].append(345)
>>> print 'a = ', a, '\n\r', 'b = ', b
a = ['world', [123, 234, 345]]
b = ['hello', [123, 234, 345]]
a中第一个元素str改变,但是b中未改变;a中第二个元素改变,b中也改变。这就符合不可变的对象修改会开辟新的空间,可变的对象修改不会开辟新空间。也进一步证明了 浅拷贝仅仅是复制了容器中元素的地址 。
三、深拷贝
代码如下:
>>> from copy import deepcopy
>>> a = ['hello', [123, 234]]
>>> b = deepcopy(a)
>>> [id(x) for x in a, b]
[4496066824, 4496066680]
>>> [id(x) for x in a]
[4496091584, 4496067040]
>>> [id(x) for x in b]
[4496091584, 4496371792]
深拷贝后,可以发现a, b地址以及a, b中元素地址均不同。这才是完全 拷贝了一个副本 。
修改a的值后:
代码如下:
>>> a[0] = 'world'
>>> a[1].append(345)
>>> print 'a = ', a, '\n\r', 'b = ', b
a = ['world', [123, 234, 345]]
b = ['hello', [123, 234]]
从Line4,5中可以发现仅仅a修改了,b没有任何修改。 因为b是一个完全的副本,元素地址均与a不同,a修改,b不受影响 。
总结:
1. 赋值是将一个对象的地址赋值给一个变量,让变量指向该地址( 旧瓶装旧酒 )。
2. 浅拷贝是在另一块地址中创建一个新的变量或容器,但是容器内的元素的地址均是源对象的元素的地址的拷贝。也就是说新的容器中指向了旧的元素( 新瓶装旧酒 )。
3. 深拷贝是在另一块地址中创建一个新的变量或容器,同时容器内的元素的地址也是新开辟的,仅仅是值相同而已,是完全的副本。也就是说( 新瓶装新酒 )。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tidak mustahil untuk menyelesaikan penukaran XML ke PDF secara langsung di telefon anda dengan satu aplikasi. Ia perlu menggunakan perkhidmatan awan, yang boleh dicapai melalui dua langkah: 1. Tukar XML ke PDF di awan, 2. Akses atau muat turun fail PDF yang ditukar pada telefon bimbit.

Kelajuan XML mudah alih ke PDF bergantung kepada faktor -faktor berikut: kerumitan struktur XML. Kaedah Penukaran Konfigurasi Perkakasan Mudah Alih (Perpustakaan, Algoritma) Kaedah Pengoptimuman Kualiti Kod (Pilih perpustakaan yang cekap, mengoptimumkan algoritma, data cache, dan menggunakan pelbagai threading). Secara keseluruhannya, tidak ada jawapan mutlak dan ia perlu dioptimumkan mengikut keadaan tertentu.

Tiada fungsi jumlah terbina dalam dalam bahasa C, jadi ia perlu ditulis sendiri. Jumlah boleh dicapai dengan melintasi unsur -unsur array dan terkumpul: Versi gelung: SUM dikira menggunakan panjang gelung dan panjang. Versi Pointer: Gunakan petunjuk untuk menunjuk kepada unsur-unsur array, dan penjumlahan yang cekap dicapai melalui penunjuk diri sendiri. Secara dinamik memperuntukkan versi Array: Perlawanan secara dinamik dan uruskan memori sendiri, memastikan memori yang diperuntukkan dibebaskan untuk mengelakkan kebocoran ingatan.

Permohonan yang menukarkan XML terus ke PDF tidak dapat dijumpai kerana mereka adalah dua format yang berbeza. XML digunakan untuk menyimpan data, manakala PDF digunakan untuk memaparkan dokumen. Untuk melengkapkan transformasi, anda boleh menggunakan bahasa pengaturcaraan dan perpustakaan seperti Python dan ReportLab untuk menghuraikan data XML dan menghasilkan dokumen PDF.

Untuk menukar imej XML, anda perlu menentukan struktur data XML terlebih dahulu, kemudian pilih perpustakaan grafik yang sesuai (seperti matplotlib Python) dan kaedah, pilih strategi visualisasi berdasarkan struktur data, pertimbangkan volum data dan format imej, lakukan pemprosesan batch atau gunakan perpustakaan yang cekap, dan akhirnya simpan sebagai PNG, JPEG, atau SVG mengikut keperluan.

Alat pemformatan XML boleh menaip kod mengikut peraturan untuk meningkatkan kebolehbacaan dan pemahaman. Apabila memilih alat, perhatikan keupayaan penyesuaian, pengendalian keadaan khas, prestasi dan kemudahan penggunaan. Jenis alat yang biasa digunakan termasuk alat dalam talian, pemalam IDE, dan alat baris arahan.

XML boleh ditukar kepada imej dengan menggunakan perpustakaan penukar XSLT atau imej. XSLT Converter: Gunakan pemproses XSLT dan stylesheet untuk menukar XML ke imej. Perpustakaan Imej: Gunakan perpustakaan seperti PIL atau ImageMagick untuk membuat imej dari data XML, seperti bentuk lukisan dan teks.

Tiada aplikasi yang boleh menukar semua fail XML ke dalam PDF kerana struktur XML adalah fleksibel dan pelbagai. Inti XML ke PDF adalah untuk menukar struktur data ke dalam susun atur halaman, yang memerlukan parsing XML dan menjana PDF. Kaedah umum termasuk parsing XML menggunakan perpustakaan python seperti ElementTree dan menjana PDF menggunakan perpustakaan ReportLab. Untuk XML yang kompleks, mungkin perlu menggunakan struktur transformasi XSLT. Apabila mengoptimumkan prestasi, pertimbangkan untuk menggunakan multithreaded atau multiprocesses dan pilih perpustakaan yang sesuai.
