123456789组成的3×3的矩阵的行列式最大的值是多少?
123456789怎样运算等于1? - abccsss 的回答假定每个数字只能出现一次。
回复内容:
Mathematica代码较简洁
Det/@N@Range@9~Permutations~{9}~ArrayReshape~{9!,3,3}//Max

以上用Matlab暴力破解(枚举

<span class="n">max_det</span> <span class="p">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">init_perm</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span> <span class="n">all_perms</span> <span class="p">=</span> <span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span> <span class="k">for</span> <span class="nb">i</span> <span class="p">=</span> <span class="mi">1</span><span class="p">:</span><span class="nb">size</span><span class="p">(</span><span class="n">all_perms</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="n">matrix</span> <span class="p">=</span> <span class="n">all_perms</span><span class="p">(</span><span class="nb">i</span><span class="p">,</span> <span class="p">:);</span> <span class="n">matrix</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="n">matrix</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span> <span class="n">det_value</span> <span class="p">=</span> <span class="n">det</span><span class="p">(</span><span class="n">matrix</span><span class="p">);</span> <span class="k">if</span> <span class="n">det_value</span> <span class="o">></span> <span class="n">max_det</span> <span class="n">max_det</span> <span class="p">=</span> <span class="n">det_value</span><span class="p">;</span> <span class="n">init_perm</span> <span class="p">=</span> <span class="n">matrix</span><span class="p">;</span> <span class="k">end</span> <span class="k">end</span>

matrix = Partition[#, 3] & /@ list;
answer = Det /@ matrix;
m = Max[answer];
pos = Flatten[Position[answer, m]];
matrix[[#]] & /@ pos 贴个毫无技术含量暴力程度max的python版。。。
import itertools import time def max_matrix(): begin = time.time() elements = [1, 2, 3, 4, 5, 6, 7, 8, 9] maxdet = 0 maxmat = [] for i in itertools.permutations(elements, 9): det = i[0] * i[4] * i[8] + i[1] * i[5] * i[6] + i[2] * i[3] * i[7] - i[2] * i[4] * i[6] - i[1] * i[3] * i[8] - i[0] * i[5] * i[7] if(det > maxdet): maxdet = det maxmat = [] for j in range(0, 9): maxmat.append(i[j]) print "|" + str(maxmat[0]) + " " + str(maxmat[1]) + " " + str(maxmat[2]) + "|" print "|" + str(maxmat[3]) + " " + str(maxmat[4]) + " " + str(maxmat[5]) + "| = " + str(maxdet) print "|" + str(maxmat[6]) + " " + str(maxmat[7]) + " " + str(maxmat[8]) + "|" end = time.time() print str(end - begin) + 's used.' if __name__ == '__main__': max_matrix()
<span class="cp">#include <cstdio></span> <span class="cp">#include <algorithm></span> <span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span> <span class="kt">int</span> <span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">};</span> <span class="kt">int</span> <span class="nf">main</span><span class="p">()</span> <span class="p">{</span> <span class="k">do</span> <span class="n">ans</span> <span class="o">=</span> <span class="n">max</span><span class="p">(</span><span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">])</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">])</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]));</span> <span class="k">while</span> <span class="p">(</span><span class="n">next_permutation</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">9</span><span class="p">));</span> <span class="n">printf</span><span class="p">(</span><span class="s">"%d</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span> <span class="n">ans</span><span class="p">);</span> <span class="p">}</span>
9 4 2
3 8 6
5 1 7
很容易看出思路了。
1.所有数按大小在斜率为-1的对角线上依次排开。(即:987在一条对角线,654在一条,321在一条)很容易看出这是让正向数值最大的方法。
2.对于反向的对角线,排除主对角线之外的任意两个数之和相等,且乘积越大的,相应的主对角线元素越小。(也就是让三个乘积的最大值最小,然后最大的结果再和最小的数相配这样)
但是以上方法仅限于1~9的3x3矩阵,对于其它的矩阵不一定适用。
因为显然这种方法要求正向和负向都只有对角线(或平行于对角线),但是4x4的行列式就开始有拐弯了。。。
然后,我感觉还有三个漏洞,一是贪心法不一定保证正向最大,也不一定保证反向最小,更不一定保证正反向之差最大。(不一定都是漏洞,可能有的是恒成立的)
但是我感觉对3x3的非负矩阵来说,贪心在多数情况下是可以拿到最大值的。
PS:试了很多组数,都是这个解,然后又试了一组[1 2 3 4 5 6 7 8 100],显然答案发生了变化,因为100的权值比8和7大太多,所以负向的时候直接就把2和1给了100。那么这也就证明了贪心法确实有时候得不到最大值。 前面已经有了python,c和MMA的代码了,我来一发matlab的吧
<span class="n">p</span><span class="p">=</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span> <span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="o">~</span><span class="p">]=</span><span class="nb">size</span><span class="p">(</span><span class="n">p</span><span class="p">);</span> <span class="n">z</span><span class="p">=</span><span class="nb">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span> <span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="n">n</span> <span class="n">z</span><span class="p">(</span><span class="nb">i</span><span class="p">)=</span><span class="n">det</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="nb">i</span><span class="p">,:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span> <span class="k">end</span> <span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="n">id</span><span class="p">=</span><span class="nb">find</span><span class="p">(</span><span class="n">z</span><span class="o">==</span><span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">));</span> <span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">id</span><span class="p">)</span> <span class="nb">disp</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="n">id</span><span class="p">(</span><span class="nb">i</span><span class="p">),:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span> <span class="k">end</span>
<span class="n">p</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">),</span><span class="s">''</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span> <span class="n">M</span> <span class="p">=</span> <span class="n">max</span><span class="p">(</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span><span class="o">-</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span><span class="mi">2</span><span class="p">));</span>
直接9!个结果存下来刚正面,0优化
Det[Partition[#, 3]] & /@ Permutations[Range[9]] // Max 412

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Ekspresi biasa adalah alat yang berkuasa untuk memadankan corak dan manipulasi teks dalam pengaturcaraan, meningkatkan kecekapan dalam pemprosesan teks merentasi pelbagai aplikasi.

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...
