python - spark读入文件,报错 java.io.IOException:No input paths specified in job
迷茫
迷茫 2017-04-18 10:18:40
0
3
1594

想尝试着处理一下文本,结果都载入不进来。。。
文件路径肯定没问题
求大神指教

fileName = "file:///Users/liuchong/Desktop/Animal Farm.txt"
liuDF = sqlContext.read.text(fileName).select('value')
print type(liuDF)
liuDF.show()

报错:


---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
 in ()
      5 liuDF = sqlContext.read.text(fileName).select('value')
      6 print type(liuDF)
----> 7 liuDF.show()
      8 #print liuDF.count()
      9 def removePunctuation(column):

/databricks/spark/python/pyspark/sql/dataframe.py in show(self, n, truncate)
    255         +---+-----+
    256         """
--> 257         print(self._jdf.showString(n, truncate))
    258 
    259     def __repr__(self):

/databricks/spark/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
    811         answer = self.gateway_client.send_command(command)
    812         return_value = get_return_value(
--> 813             answer, self.gateway_client, self.target_id, self.name)
    814 
    815         for temp_arg in temp_args:

/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     43     def deco(*a, **kw):
     44         try:
---> 45             return f(*a, **kw)
     46         except py4j.protocol.Py4JJavaError as e:
     47             s = e.java_exception.toString()

/databricks/spark/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    306                 raise Py4JJavaError(
    307                     "An error occurred while calling {0}{1}{2}.\n".
--> 308                     format(target_id, ".", name), value)
    309             else:
    310                 raise Py4JError(
Py4JJavaError: An error occurred while calling o77.showString.
: java.io.IOException: No input paths specified in job
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:156)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:208)
    at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190)
    at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
    at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
    at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
    at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
    at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
    at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
    at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
    at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
    at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
    at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
    at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
    at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:170)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:497)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
    at py4j.Gateway.invoke(Gateway.java:259)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:209)
    at java.lang.Thread.run(Thread.java:745)
迷茫
迷茫

业精于勤,荒于嬉;行成于思,毁于随。

membalas semua(3)
左手右手慢动作
 No input paths specified in job

Log dengan jelas menyatakan bahawa laluan yang dimasukkan tidak wujud.

刘奇

Adakah anda pasti terdapat ruang dalam nama teks? Animal Farm.txt"

洪涛

Adakah anda berlari dalam kelompok? Adalah disyorkan untuk membuang fail ke dalam HDFS dan menukar laluan ke URL HDFS.

Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan