如果要统对hbase中的数据,进行某种统计,比如统计某个字段最大值,统计满足某种条件的记录数,统计各种记录特点,并按照记录特点分类(类似于sql的group by)~ 常规的做法就是把hbase中整个表的数据scan出来,或者稍微环保一点,加一个filter,进行一些初步
如果要统对hbase中的数据,进行某种统计,比如统计某个字段最大值,统计满足某种条件的记录数,统计各种记录特点,并按照记录特点分类(类似于sql的group by)~
常规的做法就是把hbase中整个表的数据scan出来,或者稍微环保一点,加一个filter,进行一些初步的过滤(对于rowcounter来说,就加了FirstKeyOnlyFilter),但是这么做来说还是会有很大的副作用,比如占用大量的网络带宽(当标级别到达千万级别,亿级别之后)尤为明显,RPC的量也是不容小觑的。
拿row counter这个简单例子来说,我要统计总行数,如果每个region 告诉我他又多少行,然后把结果告诉我,我再将他们的结果汇总一下,不就行了么?
现在的问题是hbase没有提供这种接口,来统计每个region的行数,那是否我们可以自己来实现一个呢?
没错,正如本文标题所说,我们可以自己来实现一个Endpoint,然后让hbase加载起来,然后我们远程调用即可。
先弄清楚什么是hbase coprocessor
hbase有两种coprocessor,一种是Observer(观察者),类似于关系数据库的trigger(触发器),另外一种就是EndPoint,类似于关系数据库的存储过程。
观察者这里就多做介绍了,这里介绍Endpoint。
EndPoint是动态RPC插件的接口,它的实现代码被部署在服务器端(regionServer),从而能够通过HBase RPC调用。客户端类库提供了非常方便的方法来调用这些动态接口,它们可以在任意时候调用一个EndPoint,它们的实现代码会被目标region远程执行,结果会返回到终端。用户可以结合使用这些强大的插件接口,为HBase添加全新的特性。
1. 定义一个新的protocol接口,必须继承CoprocessorProtocol.
2. 实现终端接口,继承抽象类BaseEndpointCoprocessor,改实现代码需要部署到
3. 在客户端,终端可以被两个新的HBase Client API调用 。单个region:HTableInterface.coprocessorProxy(Class
如图
public interface CounterProtocol extends CoprocessorProtocol { public long count(byte[] start, byte[] end) throws IOException; }
public class CounterEndPoint extends BaseEndpointCoprocessor implements CounterProtocol { @Override public long count(byte[] start, byte []end) throws IOException { // aggregate at each region Scan scan = new Scan(); long numRow = 0; InternalScanner scanner = ((RegionCoprocessorEnvironment) getEnvironment()).getRegion() .getScanner(scan); try { List curVals = new ArrayList(); boolean hasMore = false; do { curVals.clear(); hasMore = scanner.next(curVals); if (Bytes.compareTo(curVals.get(0).getRow(), start)= 0) { break; } numRow++; } while (hasMore); } finally { scanner.close(); } return numRow; } }
public class CounterEndPointDemo { public static void main(String[] args) throws IOException, Throwable { final String startRow = args[0]; final String endRow = args[1]; @SuppressWarnings("resource") HTableInterface table = new HTable(HBaseConfiguration.create(), "tc"); Map results; // scan: for all regions results = table.coprocessorExec(CounterProtocol.class, startRow.getBytes(), endRow.getBytes(), new Batch.Call() { public Long call(CounterProtocol instance) throws IOException { return instance.count(startRow.getBytes(), endRow.getBytes()); } }); long total = 0; for (Map.Entry e : results.entrySet()) { System.out.println(e.getValue()); total += e.getValue(); } System.out.println("total:" + total); } }
整个程序的框架其实又是另外一个mapreduce,只是运行在region server上面,reduce运行在客户端,其中map计算量较大,reduce计算量很小!
另外需要提醒的是:
protocol的返回类型,可以是基本类型。
如果是一个自定义的类型需要实现org.apache.hadoop.io.Writable接口。
关于详细的支持类型,请参考代码hbase源码:org.apache.hadoop.hbase.io.HbaseObjectWritable
1. 通过hbase-site.xml增加
hbase.coprocessor.region.classes xxxx.CounterEndPoint
2. 通过shell方式
增加:
hbase(main):005:0> alter 't1', METHOD => 'table_att', 'coprocessor'=>'hdfs:///foo.jar|com.foo.FooRegionObserver|1001|arg1=1,arg2=2' Updating all regions with the new schema... 1/1 regions updated. Done. 0 row(s) in 1.0730 seconds
coprocessor格式为:
[FilePath]|ClassName|Priority|arguments
arguments: k=v[,k=v]+
卸载:
这是一个最简单的例子,另外还有很多统计场景,可以用在这种方式实现,有如下好处:
其他应用场景?
参考:
1. http://blogs.apache.org/hbase/entry/coprocessor_introduction
2. https://issues.apache.org/jira/browse/HBASE-1512
原文地址:使用HBase EndPoint(coprocessor)进行计算, 感谢原作者分享。