When using BeautifulSoup for web crawling, the find_previous_sibling function does not work properly.
P粉187160883
P粉187160883 2023-09-19 11:33:53
0
1
738

I'm trying to extract several values ​​from the website (https://carone.com.uy/autos-usados-y-0km?p=21). Some work fine, but some don't. For example, I am able to extract the name, model, price and fuel type, but cannot correctly extract the "Year" or "Kilometers" fields, the code always returns "N/A" as the value.

This is the code I'm using:

import pandas as pd
from datetime import date
import os
import socket
import requests
from bs4 import BeautifulSoup

def scrape_product_data(url):
    try:
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
        }

        product_data = []

        # Make the request to get the HTML content
        response = requests.get(url, headers=headers)
        response.raise_for_status()  # Check if the request was successful

        soup = BeautifulSoup(response.text, 'html.parser')
        product_elements = soup.find_all('div', class_='product-item-info')
        for product_element in product_elements:
            # Extract product name, price, model, and attributes as before (same code as previous version)
            product_name_element = product_element.select_one('p.carone-car-info-data-brand.cursor-pointer')
            product_name = product_name_element.text.strip() if product_name_element else "N/A"

            product_price_element = product_element.find('span', class_='price')
            product_price = product_price_element.text.strip() if product_price_element else "N/A"

            product_model_element = product_element.select_one('p.carone-car-info-data-model')
            product_model = product_model_element.get('title').strip() if product_model_element else "N/A"

            # Extract product attributes
            attributes_div = product_element.find('div', class_='carone-car-attributes')
            
            year_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Año')
            year_value = year_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if year_element else "N/A"

            kilometers_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Kilómetros')
            kilometers_value = kilometers_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if kilometers_element else "N/A"

            fuel_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Combustible')
            fuel_value = fuel_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if fuel_element else "N/A"

            # Append product data as a tuple (name, price, model, year, kilometers, fuel) to the list
            product_data.append((product_name, product_price, product_model, year_value, kilometers_value, fuel_value))

The result looks like this: enter image description here

I don't understand why the mentioned value always gets "N/A" while the other ones work fine and the method is the same.

P粉187160883
P粉187160883

reply all(1)
P粉759457420

The problem is that instead of Kilómetros, the site uses Kilómetros in the text of the element (the same goes for age):

def scrape_product_data(url):
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
    }

    product_data = []

    response = requests.get(url, headers=headers)
    response.raise_for_status()

    soup = BeautifulSoup(response.text, "html.parser")
    product_elements = soup.find_all("div", class_="product-item-info")
    for product_element in product_elements:
        product_name_element = product_element.select_one(
            "p.carone-car-info-data-brand.cursor-pointer"
        )
        product_name = (
            product_name_element.text.strip() if product_name_element else "N/A"
        )

        product_price_element = product_element.find("span", class_="price")
        product_price = (
            product_price_element.text.strip() if product_price_element else "N/A"
        )

        product_model_element = product_element.select_one(
            "p.carone-car-info-data-model"
        )
        product_model = (
            product_model_element.get("title").strip()
            if product_model_element
            else "N/A"
        )

        attributes_div = product_element.find("div", class_="carone-car-attributes")

        year_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Año"
        )
        year_value = (
            year_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if year_element
            else "N/A"
        )

        kilometers_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Kilómetros"
        )
        kilometers_value = (
            kilometers_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if kilometers_element
            else "N/A"
        )

        fuel_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Combustible"
        )
        fuel_value = (
            fuel_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if fuel_element
            else "N/A"
        )

        product_data.append(
            (
                product_name,
                product_price,
                product_model,
                year_value,
                kilometers_value,
                fuel_value,
            )
        )

    return pd.DataFrame(
        product_data, columns=["Name", "Price", "Model", "Year", "KM", "Fuel"]
    )


df = scrape_product_data("https://carone.com.uy/autos-usados-y-0km?p=2")
print(df)

Print results:

                 Name      Price                                 Model  Year      KM   Fuel
0        Renault Kwid  US.000               KWID 1.0 INTENSE TACTIL  2018  82.390  NAFTA
1      Chevrolet Onix  US.800                   NEW ONIX 1.0T RS MT  2021  46.000  NAFTA
2        Suzuki Swift  US.800                 NUEVO SWIFT 1.2 GL AT  2020  63.641  NAFTA
3           Fiat Toro  US.800                TORO 1.8 FREEDOM DC MT  2021  15.330  NAFTA
4       Renault Oroch  US.300  NEW OROCH INTENS OUTSIDER 1.3T DC AT  2023  21.360  NAFTA
5     Renault Stepway  US.100                 STEPWAY PRIVILEGE 1.6  2017  60.010  NAFTA
6        Renault Kwid  US.100                         KWID 1.0 LIFE  2022      14  NAFTA
7      Chevrolet Onix  US.800              NEW ONIX 1.0T PREMIER AT  2021  14.780  NAFTA
8   Nissan SENTRA B18  US.000           SENTRA B18 2.0 EXCLUSIVE AT  2022  30.430  NAFTA
9        Renault Kwid  US.500                   KWID 1.0 INTENSE MT  2020  37.660  NAFTA
10  Chevrolet Tracker  US.300                TRACKER 1.8 LTZ 4X4 AT  2014  91.689  NAFTA
11     Chevrolet Onix  US.600            NEW ONIX PLUS 1.2 LS 4P MT  2022  24.658  NAFTA
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template