大数据量数据存储分表实例(企业级应用系统)附原码
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。 例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方
随着数据不断增长,数据库中单表无法满足大数据量的存储,所以我们就提出按照自然时间、单站点信息分表来存储大量秒级数据。
例如:大气、水利、交通(GPS)信息监测系统中的实时数据进行存储,一般时按照开始时间、结束时间、单站点、多站点、监测项目等方式进行数据查询、分析、图表。
如 按5分钟单站点的数据12*24(小时)*365(天)*(监测项)10=100W ,也就是一个站点一年数据量 100w条,100站*100W =1亿条这样的数据是无法满足快速查询。
所以我们就按照 ”tb_5M_年_站号“建表名称,tb_时间刻度_年份_站号建表 。 "TB_5M_2016_A0001", "TB_5M_2016_A0002", "TB_5M_2016_A0003",, "TB_5M_2016_A0004"
条张表 存储100W,如存储1分钟的数据单表就 500W条, 如1秒钟数据:60*500W=3亿条数据,这样不行啊,我们要以在分表,分表规则中加一个月份,tb_5M_年_月_站号,这里就不说了。
问题来,我们如何方便快捷编写代码那?,我们还想用ORM(EF)进行数据查询,就拿我们真实项目来说吧。
思路,我们用.NET开发,在数据库建基本表(tb_5m_Base)来实现EF,用 DbContext实现数据访问。
别的不多说了,直接来代码吧,
功能5分钟数据查询,用户指定开始时间、结束时间、单(多)选择站点、单(多)选择监测 项目,进行数据查询功能。
代码发如下:
public class Tb_5m_Base
{
public int ID{ get; set; }
public Datatime Time{ get; set; }
public string Pcodes { get; set; }
public double Values{ get; set; }
}
public partial class EntityFrameworkDataContext : DbContext
{
static EntityFrameworkDataContext()
{
Database.SetInitializer
}
public EntityFrameworkDataContext()
: base("Name=EntityFrameworkDataContext")
{
}
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
modelBuilder.Configurations.Add(new tb_5m_Base());
}
public DbSet TB_5m_Base{ get; set; }
}
public class BLLDataQuery
{
///
/// 获取数据
///
/// 开始日期
/// 结果日期
/// 站点ID :1,2,3
/// 监测项 :EC,PC,MC
///
public static List
{
List
string[] strArray = stationids.Split(new char[] { ',' });
int year = startTime.Year;
int num = endTime.Year;
string str = string.Empty;
string commandText = string.Empty;
pcodus=pcodus;
while (year
{
foreach (string strstationid in strArray) //站点
{
tbname= string.Format("tb_5m_{0}_{1}_Src", year, strstationid );
commandText = string.Format("Select * from {0} where TIME between '{1}' and '{2}' and pcodes in ({3}) ", new object[] { tbname, startTime, endTime, pcodus});
try
{
using (EntityFrameworkDataContext _dbcontext = EntityFrameworkDataContext.CreateDbContext)
{
list.AddRange(_dbcontext.Database.SqlQuery
}
}
catch (Exception exception)
{
}
}
year++;
}
return list;
}

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

本站3月7日訊息,華為資料儲存產品線總裁週躍峰博士日前出席MWC2024大會,專門展示了為溫資料(WarmData)和冷資料(ColdData)設計的新一代OceanStorArctic磁電儲存解決方案。華為資料儲存產品線總裁週躍峰發布系列創新解決方案圖來源:華為本站附上華為官方新聞稿內容如下:該方案的成本比磁帶低20%,功耗比硬碟低90%。根據國外科技媒體blocksandfiles報道,華為發言人也透露了關於該磁電儲存解決方案的資訊:華為的磁電磁碟(MED)是對磁性儲存媒體的重大創新。第一代ME

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高
