基于两两交互张量分解模型的个性化标签推荐
基于PITF的个性化标签推荐 摘要 关键词 引言 相关工作 个性化标签推荐 非个性化标签推荐 张量分解模型 成对交互模型 个性化标签推荐 形式化定义 数据分析 标签推荐的贝叶斯个性化排序BPR BPR最优化准则 BPR学习算法 张量分解模型 塔克分解模型TDTF 规范化分
- 基于PITF的个性化标签推荐
- 摘要
- 关键词
- 引言
- 相关工作
- 个性化标签推荐
- 非个性化标签推荐
- 张量分解模型
- 成对交互模型
- 个性化标签推荐
- 形式化定义
- 数据分析
- 标签推荐的贝叶斯个性化排序BPR
- BPR最优化准则
- BPR学习算法
- 张量分解模型
- 塔克分解模型TDTF
- 规范化分解模型CDTF
- 成对交互张量分解模型PITF
- TDCD和PITF之间的关系
- 实验评价
- 数据集
- 评价方法
- 实验结果
- 学习运行时间
- 预测质量
- ECMLPKDD 2009知识发现挑战赛
- 结论和未来工作
基于PITF的个性化标签推荐
摘要
在很多最近的网站中,标签扮演了一个重要的角色。推荐系统在用户想要给某个产品打标签时向其推荐他可能会使用的标签。基于Tucker分解(TD)模型的分解模型已经显示出了较高的性能,其标签推荐质量优于其它方法如PageRank,FolkRank和协同过滤等等。TD模型的问题在于三次核张量会导致在预测和学习时候的三次方的时间复杂度。
本文我们给出分解模型PITF(Pairwise Interaction Tensor Factorization,成对交互张量分解),这是一种特殊的TD模型,但是在学习和预测时的时间复杂度是线性的。PITF可以对用户、产品和标签之间的两两交互进行准确建模。之前用于产品推荐的贝叶斯个性化排序(BPR)准则被用于学习该模型。在真实数据集上的实验表明PITF模型在运算时间上远远优于传统TD模型,甚至能得到更好的预测精度。除了本文的实验外,PITF还赢得了ECML/PKDD 2009知识发现竞赛中基于图的标签推荐的奖项。
关键词
标签推荐,张量分解,个性化,推荐系统
引言
标签是Web 2.0时代的一个重要特征。它允许用户给产品/资源如音乐,图片和书签用关键词进行注释。标签帮助用户组织他的项目,促进浏览和搜索行为。标签推荐系统通过向用户推荐他可能用于一件产品的标签集合从而辅助用户的标记过程。个性化标签系统在推荐时会考虑到用户过去的标记行为。这意味着每个用户都被推荐一个个性化标签列表:也就是推荐的标签列表取决于用户和产品。由于不同的用户会使用不同的标签标记同一个项目因此需要进行个性化。Last.fm网站使用的是非个性化标签推荐系统,但是用户还是会使用不同的标签标记音乐。文献[18]给出了一个实证例子,表明最近的个性化标签推荐系统优于任何非个性化标签推荐系统的理论上的性能上限。
本文工作基于最近的使用分解模型的个性化标签推荐模型。这些模型如高维奇异值分解(HOSVD)和排序张量分解(RTF)都是基于Tucker分解模型。RTF已经表现出了很高的预测精度。使用完全Tucker分解模型的缺陷在于在分解维度上模型方程是三次方的。这使得TD模型较难应用于中等规模和大型数据集。本文我们介绍一种新的分解模型,该模型对用户、产品和标签之间的两两交互关系进行准确建模。该摸想的优势在于模型的计算复杂度是线性的,使得其可以在高维数据上进行计算。在统计学中,还有另外一种张量分解方法也有着线性的计算复杂度称作正规分解(canonical decomposition, CD),也称作并行因子分析(parallel factor analysis, PARAFAC)[2]。后面我们会说明我们的模型是CD和TD模型的特例。我们的实验结果也表明我们的两两交互模型在预测精度上明显优于CD模型,在运行时间上也略优于CD。此外,为了学习一般化的标签推荐模型,我们将贝叶斯个性化排序优化准则进行改进以适应标签推荐。
总体上,我们的贡献在于以下几点:
1. 我们将贝叶斯个性化排序优化准则(BPR-OPT)[17]进行了扩展以适应标签任务,并提供了一个基于bootstrap抽样的随机梯度下降学习算法。该优化准则和学习算法是通用的而不限于TD分解模型。
2. 我们提出的PTTF分解模型有着线性的预测时间复杂度,并分析了PITF模型与一般的Tucker分解模型和正规化分解模型之间的关系。
3. 我们的实验表明我们的BPR-PITF模型的性能在运行时间上优于预测质量最高的方法RTF-TF,计算复杂度从
相关工作
个性化标签推荐
个性化标签推荐是推荐系统中近来的一个热门话题。Hotho等人便引进了PageRank的改进版本FolkRank[5]。
非个性化标签推荐
张量分解模型
成对交互模型
个性化标签推荐
个性化标签推荐是给用户推荐一个用于注释(如,描述)某件产品的标签列表。例如,在一个音乐网站上,一个听众(用户)想要给一首音乐(产品)打上标签,系统给他推荐了他可能想要用于标记这首歌的关键词列表。为了推断这个列表,一个个性化标签推荐系统可以使用系统中的历史数据也就是过去的标记行为。例如,推荐系统可以利用用户过去给相似的产品打过的标签,或者更一般化地,利用相似用户给相似产品打过的相似标签。
形式化定义
为了形式化描述个性化标签推荐问题,我们使用[18]中的数学符号:
对给定帖子
这意味着排序
其中(1)式为总体性,(2)为反对称性,(3)为传递性。本文所有模型都是预测一个评分函数

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對
