Hive分析窗口函数(五) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
1.GROUPING SETS与另外哪种方式等价? 2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成? 3.ROLLUP与ROLLUP关系是什么? GROUPING SETS,GROUPING__ID,CUBE,ROLLUP这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统
1.GROUPING SETS与另外哪种方式等价?2.根据GROUP BY的维度的所有组合进行聚合由哪个关键字完成?
3.ROLLUP与ROLLUP关系是什么?
GROUPING SETS,GROUPING__ID,CUBE,ROLLUP 这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。 Hive版本为 apache-hive-0.13.1 数据准备:
2015-03,2015-03-10,cookie1 2015-03,2015-03-10,cookie5 2015-03,2015-03-12,cookie7 2015-04,2015-04-12,cookie3 2015-04,2015-04-13,cookie2 2015-04,2015-04-13,cookie4 2015-04,2015-04-16,cookie4 2015-03,2015-03-10,cookie2 2015-03,2015-03-10,cookie3 2015-04,2015-04-12,cookie5 2015-04,2015-04-13,cookie6 2015-04,2015-04-15,cookie3 2015-04,2015-04-15,cookie2 2015-04,2015-04-16,cookie1 CREATE EXTERNAL TABLE lxw1234 ( month STRING, day STRING, cookieid STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile location '/tmp/lxw11/'; hive> select * from lxw1234; OK 2015-03 2015-03-10 cookie1 2015-03 2015-03-10 cookie5 2015-03 2015-03-12 cookie7 2015-04 2015-04-12 cookie3 2015-04 2015-04-13 cookie2 2015-04 2015-04-13 cookie4 2015-04 2015-04-16 cookie4 2015-03 2015-03-10 cookie2 2015-03 2015-03-10 cookie3 2015-04 2015-04-12 cookie5 2015-04 2015-04-13 cookie6 2015-04 2015-04-15 cookie3 2015-04 2015-04-15 cookie2 2015-04 2015-04-16 cookie1
GROUPING SETS
在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM lxw1234 GROUP BY month,day GROUPING SETS (month,day) ORDER BY GROUPING__ID; month day uv GROUPING__ID ------------------------------------------------ 2015-03 NULL 5 1 2015-04 NULL 6 1 NULL 2015-03-10 4 2 NULL 2015-03-12 1 2 NULL 2015-04-12 2 2 NULL 2015-04-13 3 2 NULL 2015-04-15 2 2 NULL 2015-04-16 2 2 等价于 SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
再如:
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM lxw1234 GROUP BY month,day GROUPING SETS (month,day,(month,day)) ORDER BY GROUPING__ID; month day uv GROUPING__ID ------------------------------------------------ 2015-03 NULL 5 1 2015-04 NULL 6 1 NULL 2015-03-10 4 2 NULL 2015-03-12 1 2 NULL 2015-04-12 2 2 NULL 2015-04-13 3 2 NULL 2015-04-15 2 2 NULL 2015-04-16 2 2 2015-03 2015-03-10 4 3 2015-03 2015-03-12 1 3 2015-04 2015-04-12 2 3 2015-04 2015-04-13 3 3 2015-04 2015-04-15 2 3 2015-04 2015-04-16 2 3 等价于 SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
其中的 GROUPING__ID,表示结果属于哪一个分组集合。
CUBE
根据GROUP BY的维度的所有组合进行聚合。
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM lxw1234 GROUP BY month,day WITH CUBE ORDER BY GROUPING__ID; month day uv GROUPING__ID -------------------------------------------- NULL NULL 7 0 2015-03 NULL 5 1 2015-04 NULL 6 1 NULL 2015-04-12 2 2 NULL 2015-04-13 3 2 NULL 2015-04-15 2 2 NULL 2015-04-16 2 2 NULL 2015-03-10 4 2 NULL 2015-03-12 1 2 2015-03 2015-03-10 4 3 2015-03 2015-03-12 1 3 2015-04 2015-04-16 2 3 2015-04 2015-04-12 2 3 2015-04 2015-04-13 3 3 2015-04 2015-04-15 2 3 等价于 SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234 UNION ALL SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合: SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM lxw1234 GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID; month day uv GROUPING__ID --------------------------------------------------- NULL NULL 7 0 2015-03 NULL 5 1 2015-04 NULL 6 1 2015-03 2015-03-10 4 3 2015-03 2015-03-12 1 3 2015-04 2015-04-12 2 3 2015-04 2015-04-13 3 3 2015-04 2015-04-15 2 3 2015-04 2015-04-16 2 3 可以实现这样的上钻过程: 月天的UV->月的UV->总UV 复制代码 --把month和day调换顺序,则以day维度进行层级聚合: SELECT day, month, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM lxw1234 GROUP BY day,month WITH ROLLUP ORDER BY GROUPING__ID; day month uv GROUPING__ID ------------------------------------------------------- NULL NULL 7 0 2015-04-13 NULL 3 1 2015-03-12 NULL 1 1 2015-04-15 NULL 2 1 2015-03-10 NULL 4 1 2015-04-16 NULL 2 1 2015-04-12 NULL 2 1 2015-04-12 2015-04 2 3 2015-03-10 2015-03 4 3 2015-03-12 2015-03 1 3 2015-04-13 2015-04 3 3 2015-04-15 2015-04 2 3 2015-04-16 2015-04 2 3 可以实现这样的上钻过程: 天月的UV->天的UV->总UV (这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Go語言提供了兩種動態函數創建技術:closures和反射。 closures允許存取閉包作用域內的變量,而反射可使用FuncOf函數建立新函數。這些技術在自訂HTTP路由器、實現高度可自訂的系統和建置可插拔的元件方面非常有用。

在C++函數命名中,考慮參數順序至關重要,可提高可讀性、減少錯誤並促進重構。常見的參數順序約定包括:動作-物件、物件-動作、語意意義和遵循標準函式庫。最佳順序取決於函數目的、參數類型、潛在混淆和語言慣例。

1. SUM函數,用於對一列或一組單元格中的數字進行求和,例如:=SUM(A1:J10)。 2、AVERAGE函數,用於計算一列或一組儲存格中的數字的平均值,例如:=AVERAGE(A1:A10)。 3.COUNT函數,用於計算一列或一組單元格中的數字或文字的數量,例如:=COUNT(A1:A10)4、IF函數,用於根據指定的條件進行邏輯判斷,並返回相應的結果。

C++函數中預設參數的優點包括簡化呼叫、增強可讀性、避免錯誤。缺點是限制靈活性、命名限制。可變參數的優點包括無限彈性、動態綁定。缺點包括複雜性更高、隱式型別轉換、除錯困難。

C++中的函數傳回參考類型的好處包括:效能提升:引用傳遞避免了物件複製,從而節省了記憶體和時間。直接修改:呼叫方可以直接修改傳回的參考對象,而無需重新賦值。程式碼簡潔:引用傳遞簡化了程式碼,無需額外的賦值操作。

自訂PHP函數與預定義函數的差異在於:作用域:自訂函數僅限於其定義範圍,而預定義函數可在整個腳本中存取。定義方式:自訂函數使用function關鍵字定義,而預先定義函數則由PHP核心定義。參數傳遞:自訂函數接收參數,而預先定義函數可能不需要參數。擴充性:自訂函數可以根據需要創建,而預定義函數是內建的且無法修改。

C++中的異常處理可透過自訂異常類別增強,提供特定錯誤訊息、上下文資訊以及根據錯誤類型執行自訂操作。定義繼承自std::exception的異常類,提供特定的錯誤訊息。使用throw關鍵字拋出自訂異常。在try-catch區塊中使用dynamic_cast將捕獲到的異常轉換為自訂異常類型。在實戰案例中,open_file函數會拋出FileNotFoundException異常,捕捉並處理該異常可提供更具體的錯誤訊息。
