[原创]如何从数据库层面检测两表内容的一致性
一般来说呢,如何检测两张表的内容是否一致,这样的需求大多在从机上体现,以保证数据一致性。方法无非有两个,第一呢就是从数据库着手,第二呢就是从应用程序端着手。 我这里罗列了些如何从数据库层面来解决此类问题的方法。 当然第一步就是检查记录数是否
一般来说呢,如何检测两张表的内容是否一致,这样的需求大多在从机上体现,以保证数据一致性。方法无非有两个,第一呢就是从数据库着手,第二呢就是从应用程序端着手。 我这里罗列了些如何从数据库层面来解决此类问题的方法。
当然第一步就是检查记录数是否一致,否则不用想任何其他方法了。
这里我们用两张表t1_old,t1_new来演示。
表结构: CREATE TABLE t1_old ( id int(11) NOT NULL, log_time timestamp DEFAULT NULL ) ; CREATE TABLE t1_new ( id int(11) NOT NULL, log_time timestamp DEFAULT NULL ) ; 两表的记录数都为100条。 mysql> select count(*) from t1_old; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.31 sec) mysql> select count(*) from t1_new; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.00 sec)
方法一:用加法然后去重。
由于Union 本身具备把上下两条连接的记录做唯一性排序,所以这样检测来的非常简单。 mysql> select count(*) from (select * from t1_old union select * from t1_new) as T; +----------+ | count(*) | +----------+ | 100 | +----------+ 1 row in set (0.06 sec) 这里的记录数为100,初步证明两表内容一致。但是,这个方法有个BUG,在某些情形下不能简单表示结果集一致。 比如: mysql> create table t1_old1 (id int); Query OK, 0 rows affected (0.27 sec) mysql> create table t1_new1(id int); Query OK, 0 rows affected (0.09 sec) mysql> insert into t1_old1 values (1),(2),(3),(5); Query OK, 4 rows affected (0.15 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> insert into t1_new1 values (2),(2),(3),(5); Query OK, 4 rows affected (0.02 sec) Records: 4 Duplicates: 0 Warnings: 0 mysql> select * from t1_old1; +------+ | id | +------+ | 1 | | 2 | | 3 | | 5 | +------+ 4 rows in set (0.00 sec) mysql> select * from t1_new1; +------+ | id | +------+ | 2 | | 2 | | 3 | | 5 | +------+ 4 rows in set (0.00 sec) mysql> select count(*) from (select * from t1_old1 union select * from t1_new1) as T; +----------+ | count(*) | +----------+ | 4 | +----------+ 1 row in set (0.00 sec) mysql> 所以在这点上,这个方法等于是无效。
方法二: 用减法来归零。
由于MySQL 没有提供减法操作符,这里我们换做PostgreSQL来检测。 t_girl=# select count(*) from (select * from t1_old except select * from t1_new) as T; count ------- 0 (1 row) Time: 1.809 ms 这里检测出来结果是0,那么证明两表的内容一致。 那么我们可以针对第一种方法提到的另外一种情况做检测: t_girl=# select count(*) from (select * from t1_old1 except select * from t1_new1) as T; count ------- 1 (1 row) Time: 9.837 ms
OK,这里检测出来结果不对,那么就直接给出不一致的结论。
第三种: 用全表JOIN,这个也是最烂的做法了,当然我这里指的是在表记录数超级多的情形下。
当然这点我也用PostgreSQL来演示 t_girl=# select count(*) from t1_old as a full outer join t1_new as b using (id,log_time) where a.id is null or b.id is null; count ------- 0 (1 row) Time: 5.002 ms t_girl=# 结果为0,证明内容一致。
第四种: 用checksum校验。
比如在MySQL 里面,如果两张表的checksum值一致,那么内容也就一致。 mysql> checksum table t1_old; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_old | 60614552 | +---------------+----------+ 1 row in set (0.00 sec) mysql> checksum table t1_new; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_new | 60614552 | +---------------+----------+ 1 row in set (0.00 sec) 但是这种方法也只局限于两表结构一摸一样。 比如,我修改下表t1_old的字段类型,那么checksum的值也就不一样了。 mysql> alter table t1_old modify id bigint; Query OK, 100 rows affected (0.23 sec) Records: 100 Duplicates: 0 Warnings: 0 mysql> checksum table t1_old; +---------------+------------+ | Table | Checksum | +---------------+------------+ | t_girl.t1_old | 3211623989 | +---------------+------------+ 1 row in set (0.00 sec) mysql> checksum table t1_new; +---------------+----------+ | Table | Checksum | +---------------+----------+ | t_girl.t1_new | 60614552 | +---------------+----------+ 1 row in set (0.00 sec)
所以从上面几种数据库提供的方法来看,用减法来归零相对来说比较可靠,其他的方法比较适合在特定的情形下来检测。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

今天要為大家介紹一篇MIT上週發表的文章,使用GPT-3.5-turbo解決時間序列異常檢測問題,初步驗證了LLM在時間序列異常檢測的有效性。整個過程沒有進行finetune,直接使用GPT-3.5-turbo進行異常檢測,文中的核心是如何將時間序列轉換成GPT-3.5-turbo可辨識的輸入,以及如何設計prompt或pipeline讓LLM解決異常檢測任務。下面跟大家詳細介紹一下這篇工作。圖片論文標題:Largelanguagemodelscanbezero-shotanomalydete

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

蘋果公司最新發布的iOS18、iPadOS18以及macOSSequoia系統為Photos應用程式增添了一項重要功能,旨在幫助用戶輕鬆恢復因各種原因遺失或損壞的照片和影片。這項新功能在Photos應用的"工具"部分引入了一個名為"已恢復"的相冊,當用戶設備中存在未納入其照片庫的圖片或影片時,該相冊將自動顯示。 "已恢復"相簿的出現為因資料庫損壞、相機應用未正確保存至照片庫或第三方應用管理照片庫時照片和視頻丟失提供了解決方案。使用者只需簡單幾步

Hibernate多態映射可映射繼承類別到資料庫,提供以下映射類型:joined-subclass:為子類別建立單獨表,包含父類別所有欄位。 table-per-class:為子類別建立單獨資料表,僅包含子類別特有列。 union-subclass:類似joined-subclass,但父類別表聯合所有子類別列。

如何在PHP中使用MySQLi建立資料庫連線:包含MySQLi擴充(require_once)建立連線函數(functionconnect_to_db)呼叫連線函數($conn=connect_to_db())執行查詢($result=$conn->query())關閉連線( $conn->close())

PHP處理資料庫連線報錯,可以使用下列步驟:使用mysqli_connect_errno()取得錯誤代碼。使用mysqli_connect_error()取得錯誤訊息。透過擷取並記錄這些錯誤訊息,可以輕鬆識別並解決資料庫連接問題,確保應用程式的順暢運作。

HTML無法直接讀取資料庫,但可以透過JavaScript和AJAX實作。其步驟包括建立資料庫連線、發送查詢、處理回應和更新頁面。本文提供了利用JavaScript、AJAX和PHP來從MySQL資料庫讀取資料的實戰範例,展示如何在HTML頁面中動態顯示查詢結果。此範例使用XMLHttpRequest建立資料庫連接,發送查詢並處理回應,從而將資料填入頁面元素中,實現了HTML讀取資料庫的功能。

透過Go標準庫database/sql包,可以連接到MySQL、PostgreSQL或SQLite等遠端資料庫:建立包含資料庫連接資訊的連接字串。使用sql.Open()函數開啟資料庫連線。執行SQL查詢和插入操作等資料庫操作。使用defer關閉資料庫連線以釋放資源。
