目錄
前言
经验很重要
面试不是你问我答
理论实践
总结
资源共享
首頁 資料庫 mysql教程 ?当对自己的技术足够自信的时候,拼的就是RP和面试技巧了(转)

?当对自己的技术足够自信的时候,拼的就是RP和面试技巧了(转)

Jun 07, 2016 pm 02:59 PM
前言 科技 自己的 面試技巧

前言 三月真是一个忙碌的季节,刚刚开学就需要准备各种面试和笔试(鄙视)。幸运的是,在长达一个月的面试内推季之后,终于同时拿到了阿里和腾讯的offer,还是挺开心的。突而想起久未更新的博客,就冒昧学一学各路大神,分享面试过程中的经验总结。总的来说,

前言

三月真是一个忙碌的季节,刚刚开学就需要准备各种面试和笔试(鄙视)。幸运的是,在长达一个月的面试内推季之后,终于同时拿到了阿里和腾讯的offer,还是挺开心的。突而想起久未更新的博客,就冒昧学一学各路大神,分享面试过程中的经验总结。总的来说,本人并不是什么超级大牛,文章更多的是经历叙述,大神可自行绕道。

经验很重要

简单乱入一下,本人主修软件工程专业,对Web有着浓厚兴趣,主攻Web前端

就在三月份刚开始的时候,各种群里面就有师兄说,谁要内推,赶紧发邮件。好在牛人师兄多,一开始就投了天猫淘宝腾讯SNG腾讯微信四份内推简历。

接到的第一个面试是天猫的,在完全没有准备的情况下,就开始了长达一个多小时的电话面试。第一次难免是紧张的,在面试的一个多小时里面,多次处于颤抖状态。这里所说的颤抖是真的,原因很简单,对于这一次面试没有任何准备,加上这个面试足够有分量。挂了电话的时候,第一反应就是不断回想刚刚面试的问题以及自己回答是否正确。于是就不断回想刚刚面试官说过的什么JavaScript事件委托、HTTP状态码、前端模块化怎么实现...

和预想中的一样,第一次面完之后,然后就没有然后了。然而还没来得及失落,以及做足后续准备,腾讯的SNG电话面试就来了,问的问题很少,让你介绍一下自己的项目,为了几个常规问题(文章末尾附上所有面试题目),然后就让你开QQ,远程看你写代码..(从没想过QQ居然是面试工具)。不幸的是,写代码不给查资料,所以写的时候遇到一个闭包问题,卡了好长时间。这一次的面试长达一个半小时左右,然后就进入了漫长的等待。这一次情况不同的是,我有面试官的QQ啊!于是几天之后,我问面试官,为什么我被刷了?面试官给的理由是,你有前端模块化的思想,思路清晰,很不错,但是你写代码卡的时间比较长,必须有个刷人标准..

于是乎,在没有经验的情况下,前两轮面试就这样光荣挂彩了。

面试不是你问我答

在屡屡受挫之后,我开始反思面试的流程:自我介绍->项目经历-> 技术问题 -> 我有何问题。我发现在除了项目经历之后,其他环节都不是问题,毕竟我有着两年的积淀,基础还是很扎实的。

于是我去请教一些师兄,面试应该要注意什么。起初问了微信的两位大牛师兄,结果甚是惊讶。简单总结就是,在讲项目的时候,你需要展示你自己的亮点,可以说一些装逼的词,但装逼也是得有真材实料的。比如我在项目中使用了WebSocket,那么面试官很可能问你WebSocket是什么,底层原理你知道么?如果你当场傻掉,面试官就会觉得你只是会使用别人的东西,并不在意实现原理,终究是码农。那么事先你就应当去看看WebSocket协议的官方文档(纯英文,看得累死我了!),这样面试官一问你,你能头头是道,会大大加分。再比如,你在项目中使用了模块化,那么你就一定要知道什么是模块化,而不是说你会用模块化工具。其实要求并不高,你只要能很好说清楚什么是AMD规范,什么是CommonJs规范,各自的优缺点是什么就很够了,起码之后每次面试官问我,我都是秒回的,面试官竟无言以对,也就是对我的认同。

最后一点,也就是最重要的一点是,一定要把面试官往你熟悉的领域引导,这真的很重要,因为如果你不引导,面试官不了解你的项目,看不到你的亮点,就只能一直问技术问题刁难你,人家在大公司待这么久了,还不是轻松碾压你。所以你在引导的同时,时不时提及一些事先准备好的关键词,技术官一问,你一回答,怎么都妥了~

理论实践

上述理论其实真的是很管用的,起码我现在觉得自己是半无解了,因为在那之后的淘宝和微信面试中都顺利通过了,也可以放弃29的腾讯线下笔试了(学渣真不会C++),哈哈。

淘宝一轮的电话是一个慵懒的中午打来的,由于三点有课,两点的时候准备上去睡个午觉,还没躺下呢,就接到面试官的电话,我说我准备睡午觉,他说两点了还睡午觉...

不得不说,阿里的面试还是非常专业的,一轮的时候,花了半个小时实践我上面说的理论,然后就狂问十几个技术细节问题!没有一定的技术基础真的招架不住。面完之后个人感觉还不错,口干舌燥上课去了。后来发现阿里的面试状态是在他的招聘网上实时更新的(这一点阿里做的最好)。由于心里有底,看到通过淘宝一面并不是很惊讶,只能说要是这样都不过我就认了!最难的是二面,估计是技术总监什么的,除了常规面试流程之外会一直刁难你,这个时候需要有格外良好的心里素质。像阿里巴巴这种大公司,技术牛是没话可说的,但是我们只是一个大学生,没有做过并发量达到他们零头的应用,所以这一关考验的是思考问题的能力。有些问题是你可能是真的不会的,但是也不要出现好像是、可能是、我猜之类的词眼(我之前就是这样跪掉的),而是说按照我的理解给过一点思考时间我不太懂这个问题需要我从哪个角度解析我以前遇到类似的问题是怎样这个问题应该也是这样...这样给面试官的印象是,即便你不懂,但是你在全力思考,而且这样会给自己争取很多时间。

微信的面试就不多说了,只能说腾讯的广州研发中心真的很漂亮,一看就是工作的好地方!里面的设备啥的也是好的没话说!但是还是忍不住吐槽一下,腾讯的面试做的不够好,去到二话不说给你六道算法题,时间一个小时,然后又狂问你一个小时,一口水都没的喝!!好在痛过了,不再赘述。

总结

  • 机会总是留给有准备的人,每一次都要好好对待
  • 当对自己的技术足够自信的时候,拼的就是RP和面试技巧了
  • 面试之前,去找找那些大牛们,他们比你都有经验
  • 平常心对待,只不过是一份工作

资源共享

个人觉得每一次面试都是一次修炼,所以每一次都需要好好总结。这一点我还是做的不错的,我把大部分面试都记录了下来,然后仔细分析研究,避免不会犯二次错误。这里附上一些面试题目记。然后推荐同样面试前端的同学好好看看《JavaScript高级程序设计》《HTTP权威指南》,管用。

最后,如果有需要的同学,可以参考参考我的简历,起码简历没有被刷过,只是别打骚扰电话就行了,哈哈。https://github.com/yuanzm/resume ?当对自己的技术足够自信的时候,拼的就是RP和面试技巧了(转)?当对自己的技术足够自信的时候,拼的就是RP和面试技巧了(转) ?当对自己的技术足够自信的时候,拼的就是RP和面试技巧了(转)

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
Stable Diffusion 3論文終於發布,架構細節大揭秘,對復現Sora有幫助? Stable Diffusion 3論文終於發布,架構細節大揭秘,對復現Sora有幫助? Mar 06, 2024 pm 05:34 PM

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显著提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显著降低了使用AI

DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! Mar 21, 2024 pm 05:21 PM

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

自動駕駛與軌跡預測看這篇就夠了! 自動駕駛與軌跡預測看這篇就夠了! Feb 28, 2024 pm 07:20 PM

軌跡預測在自動駕駛中承擔著重要的角色,自動駕駛軌跡預測是指透過分析車輛行駛過程中的各種數據,預測車輛未來的行駛軌跡。作為自動駕駛的核心模組,軌跡預測的品質對於下游的規劃控制至關重要。軌跡預測任務技術堆疊豐富,需熟悉自動駕駛動/靜態感知、高精地圖、車道線、神經網路架構(CNN&GNN&Transformer)技能等,入門難度很高!許多粉絲期望能夠盡快上手軌跡預測,少踩坑,今天就為大家盤點下軌跡預測常見的一些問題和入門學習方法!入門相關知識1.預習的論文有沒有切入順序? A:先看survey,p

GSLAM | 一個通用的SLAM架構和基準 GSLAM | 一個通用的SLAM架構和基準 Oct 20, 2023 am 11:37 AM

突然發現了一篇19年的論文GSLAM:AGeneralSLAMFrameworkandBenchmark開源程式碼:https://github.com/zdzhaoyong/GSLAM直接上全文,感受這項工作的品質吧~1摘要SLAM技術最近取得了許多成功,並吸引了高科技公司的關注。然而,如何同一現有或新興演算法的介面,一級有效地進行關於速度、穩健性和可移植性的基準測試仍然是問題。本文,提出了一個名為GSLAM的新型SLAM平台,它不僅提供評估功能,還為研究人員提供了快速開發自己的SLAM系統的有用

首個多視角自動駕駛場景影片產生世界模型 | DrivingDiffusion: BEV資料與模擬新思路 首個多視角自動駕駛場景影片產生世界模型 | DrivingDiffusion: BEV資料與模擬新思路 Oct 23, 2023 am 11:13 AM

作者的一些個人思考在自動駕駛領域,隨著BEV-based子任務/端到端方案的發展,高品質的多視圖訓練資料和相應的模擬場景建立愈發重要。針對當下任務的痛點,「高品質」可以解耦成三個面向:不同維度上的長尾場景:如障礙物資料中近距離的車輛以及切車過程中精準的朝向角,以及車道線資料中不同曲率的彎道或較難收集的匝道/匯入/合流等場景。這些往往靠大量的資料收集和複雜的資料探勘策略,成本高昂。 3D真值-影像的高度一致:當下的BEV資料取得往往受到感測器安裝/標定,高精地圖以及重建演算法本身的誤差影響。這導致了我

綜述!深度模型融合(LLM/基礎模型/聯邦學習/微調等) 綜述!深度模型融合(LLM/基礎模型/聯邦學習/微調等) Apr 18, 2024 pm 09:43 PM

23年9月國防科大、京東和北理工的論文「DeepModelFusion:ASurvey」。深度模型整合/合併是一種新興技術,它將多個深度學習模型的參數或預測合併為一個模型。它結合了不同模型的能力來彌補單一模型的偏差和錯誤,以獲得更好的性能。而大規模深度學習模型(例如LLM和基礎模型)上的深度模型整合面臨一些挑戰,包括高運算成本、高維度參數空間、不同異質模型之間的干擾等。本文將現有的深度模型融合方法分為四類:(1)“模式連接”,透過一條損失減少的路徑將權重空間中的解連接起來,以獲得更好的模型融合初

《我的世界》化身AI小鎮,NPC居民角色扮演如同真人 《我的世界》化身AI小鎮,NPC居民角色扮演如同真人 Jan 02, 2024 pm 06:25 PM

請留意,這個方塊人正在緊鎖眉頭,思考著面前幾位「不速之客」的身份。原來她陷入了危險境地,意識到這一點後,她迅速展開腦力搜索,尋找解決問題的策略。最終,她決定先逃離現場,然後儘快尋求幫助,並立即採取行動。同時,對面的人也在進行著與她相同的思考……在《我的世界》中出現了這樣一個場景,所有的角色都由人工智慧控制。他們每個人都有著獨特的身份設定,例如之前提到的女孩就是一個年僅17歲但聰明又勇敢的快遞員。他們擁有記憶和思考能力,在這個以《我的世界》為背景的小鎮中像人類一樣生活。驅動他們的,是一款全新的、

不只3D高斯!最新綜述一覽最先進的3D重建技術 不只3D高斯!最新綜述一覽最先進的3D重建技術 Jun 02, 2024 pm 06:57 PM

寫在前面&筆者的個人理解基於圖像的3D重建是一項具有挑戰性的任務,涉及從一組輸入圖像推斷目標或場景的3D形狀。基於學習的方法因其直接估計3D形狀的能力而受到關注。這篇綜述論文的重點是最先進的3D重建技術,包括產生新穎的、看不見的視野。概述了高斯飛濺方法的最新發展,包括輸入類型、模型結構、輸出表示和訓練策略。也討論了尚未解決的挑戰和未來的方向。鑑於該領域的快速進展以及增強3D重建方法的眾多機會,對演算法進行全面檢查似乎至關重要。因此,本研究對高斯散射的最新進展進行了全面的概述。 (大拇指往上滑

See all articles