首頁 資料庫 mysql教程 索引视图有助于提高 T-SQL 的性能

索引视图有助于提高 T-SQL 的性能

Jun 07, 2016 pm 03:07 PM
效能 提高 索引 視圖

T-SQL 是一种允许您以逻辑方式设计请求的语言。这里所说的逻辑的意思是,当编写查询时,您指定的是希望获得 什么 结果,而不是希望 以何种方式 获得结果。对如何处理查询进行设计是查询优化器的工作。您所遇到的需要 T-SQL 解决方案的每个问题通常都有许多不

T-SQL 是一种允许您以逻辑方式设计请求的语言。这里所说的“逻辑”的意思是,当编写查询时,您指定的是希望获得什么 结果,而不是希望以何种方式 获得结果。对如何处理查询进行设计是查询优化器的工作。您所遇到的需要 T-SQL 解决方案的每个问题通常都有许多不同的解决方案,它们最终会返回同样的结果。在理想情况下,假设有两个执行同一任务的不同查询,优化器会为二者生成相同的 执行计划 - 最优化的计划。SQL Server 开发组似乎正在朝这个方向努力。利用 SQL Server 的每个发行版本,优化器会设计出更高级、更有效的计划,执行同一任务的不同查询使用这个相同计划的可能性也在提高。

不过,在许多情况下,您 编写查询的方式仍然会动态地影响查询的性能。为了使优化器在不同的计划中作出选择并找到一个高效的计划,您需要完成一些准备工作 - 也就是,创建索引。大多数人是将普通索引作为其数据库优化的一部分创建的,但我还没有看到索引视图的广泛实现。索引视图可以极大地提高查询性能,尤其在聚 合数据的时候。在某些情况下,对视图进行创建并索引后,您甚至不需要更改引用基表的原始查询,这是因为优化器的智能程度足以使用那些索引。

下 面我们将讨论使用索引视图来获得性能提高的两个问题。我假设您已经很熟悉索引视图的基本概念。(有关索引视图的详细信息,请参阅 Kalen Delaney 的 "Introducing Indexed Views" (2000 年 5 月发表,InstantDoc ID 8410)一文。)

关于新客户的问题

第一个问题涉及一个典型的市场营销请求 - 在每个期间(例如,月份),根据定单活动而定的新客户、现有客户和全部客户的数量分别是多少?某个月的新客户就是第一次下达定单的客户。现有客户是那些在 以前的月份下达过定单的客户。您可以将 Northwind 数据库中的 Orders 表作为最初的基本数据。表 1(表 1)显示了预期输出的简化版本。创建解决方案并验证您的代码在逻辑上正确无误之后,可针对一个更大的 Orders 表测试其性能,您可以通过运行第 18 页 清单 1 显示的代码,在 tempdb 中创建该表。

第 18 页 清单 2 显示了我针对此问题的第一个解决方案。定义派生表 M 的最内部查询从 Orders 返回了不同的月份和客户组合。月份表示为指向当月第一天的一个 datetime 值。定义派生表 N 的查询使用 CASE 表达式,对于每个月份和客户组合,如果该客户在当月之前还没有下达过定单,则该表达式返回 1,否则,返回 0。也就是说,如果客户是新客户,CASE 表达式返回 1。最外部查询按月份对 N 中的行进行分组,并通过对 N 表中名为 new 的列中的所有 1 进行汇总,来计算新客户的总数。客户的总数就是该组中的行数 (COUNT(*)),因为该组中的每一行都代表一个不同的客户。现有客户的数量是客户总数减去新客户的数量。

当 我编写此解决方案时,我并没有考虑性能,我只想到要用逻辑方式来编写该查询。在我的笔记本电脑上,对我在 tempdb 中创建的较大的 Orders 表运行该查询时,该查询发生了超过 137,000 次的逻辑读取,运行的时间长达 17 秒。普通索引并没有提供多少帮助 - 当我在 customerid 列和 orderdate 列上创建了组合索引后,该查询运行了 15 秒。看来,这个问题需要采用另一种方法,这次,我决定先考虑性能。

这个较大的 Orders 表会包括每个月份的每个客户的许多定单。如果您有一个只包含月份和客户的不同组合的汇总表,就可以编写一个更易于执行的查询。索引视图的实质就是对表进行汇总。请运行 清单 3 中的代码,创建一个名为 Vymcusts 的索引视图,该视图只包含月份和客户的不同组合。注意,如果您希望对一个使用聚合的视图进行索引,则必须在该视图内包括 COUNT_BIG(*) 函数。如果 SQL Server 知道每组中的行数,就可以有效地维护索引视图。

接下来,我测试了几个不同的解决方案,所有方案执行起来都比第一个要好得多。我们来看一下我编写出的执行效果最好的解决方案。我创建了另一个名为 Vnewcusts 的视图,该视图包含每个客户的最小年/月份 (ym) 值:

CREATE VIEW Vnewcusts 
AS 
SELECT customerid, MIN(ym) AS min_ym 
FROM Vymcusts (NOEXPAND) 
GROUP BY customerid
登入後複製

客户的 ym 最小值就是该客户的第一份定单的月份。NOEXPAND 提示要求优化器将索引视图视为表,不要尝试使用来自基表 Orders 的索引。最后,我将 Vymcusts (VY) 左联接到了 Vnewcusts (VN)。如果 VY 和 VN 同时拥有同一个客户,并且 VY 中的当前月份是该客户的最小月份 (VY.ym = VN.min_ym),则 VY 中的某一行会在 VN 中寻找匹配的行。如果该月份不是该客户的最小月份,则外部联接在 VN.customerid 中以及在 VN 的所有列中均返回 NULL。查询按 VY.ym 列对外部联接的结果进行分组。SQL Server 通过对 VN.customerid 中的非 Null 值进行计数来计算新客户的总数。清单 4 显示了这个最终的查询,该查询在我的笔记本电脑上只运行了 1 秒,仅发生了 280 次逻辑读取。这样的性能令人非常满意。

列基数

我发现索引视图对解决另一个问题也非常有用,这就是计算列基数 - 列中不同的值的数量。计算表中每列的基数会占用大量系统开销,因为 SQL Server 需要重新排列每列的值,这样就可以很容易地对不同的值进行计数。现在我们来看一些示例,它们使用一个具有三个数据列和一百万行的表。请运行 清单 5 显示的脚本,在 tempdb 中创建一个名为 T1 的表,该表包括的各列是 c1、c2 和 c3,这些列分别包含 50,000、100,000 和 200,000 个不同的值。

在没有适当索引的情况下,下面的查询将计算每个数据列的基数,该查询的执行性能比较差:

SET STATISTICS TIME ON 
SET STATISTICS IO ON 
SELECT COUNT(DISTINCT c1),  
COUNT(DISTINCT c2), COUNT(DISTINCT c3) FROM T1
登入後複製

我们在查询分析器中看看该查询的执行计划,我们注意到,SQL Server 对 T1 的聚集索引扫描了三次,对每一列中的值都执行了哈希操作来计数不同值的数量。因此,该查询用了很长的时间才完成,并且发生了大量 I/O 系统开销。在我的笔记本电脑上,该查询运行了 23 秒,发生了 9294 次逻辑读取。

为了获得更好的性能,很明显,第一个步骤就是对每一列进行索引:

CREATE NONCLUSTERED INDEX idx_nc_c1 ON T1(c1) 
CREATE NONCLUSTERED INDEX idx_nc_c2 ON T1(c2) 
CREATE NONCLUSTERED INDEX idx_nc_c3 ON T1(c3)
登入後複製

这样一来,SQL Server 可以用排序的方式单独扫描每个索引,并对不同的值进行计数。现在,查询只运行 5 秒钟,发生 4083 次逻辑读取。

您 可能对这样的性能提高感到满意,但对于包括更多列和更多行的表,可能还需要进一步提高性能。获得更好查询性能的一个方式(不过要以修改性能为代价)是编写 INSERT、UPDATE 和 DELETE 触发器,它们在单独的非正式表中维护每列的非重复计数值。您也可以在不使用触发器的情况下解决该问题,方法是:使用索引视图,而不是普通的非聚集索引。

对于每一列,您可以创建一个只包含感兴趣的列和 COUNT_BIG(*) 函数的索引视图,该函数是对有聚合的视图进行索引所必需的。例如,可为 c1 创建以下索引视图:

CREATE VIEW V_T1_c1 WITH SCHEMABINDING 
AS 
SELECT c1, COUNT_BIG(*)  
  AS cnt FROM dbo.T1 GROUP BY c1 
GO 
CREATE UNIQUE CLUSTERED INDEX 
 idx_uc_c1 ON V_T1_c1(c1)
登入後複製

然后,运行 清单 6 显示的脚本,为 c2 和 c3 创建索引视图。现在,重新运行该查询,测量一下持续时间和 I/O,并查看执行计划。优化器的智能程度足以理解该执行计划,对列的非重复计数进行计算,它可以只对在其 GROUP BY 子句中使用该列的索引视图内的行数进行计数。现在,该查询运行的时间不到一秒,发生的逻辑读取不到 1000 次。

关于索引视图的其他信息

如 果编写 T-SQL查询的方式对您来说很重要,您应该测试同一个问题的几个不同的解决方案来获得更好的性能。索引视图是一个很出色的优化方法,因为它会在磁盘上存 储查询结果;尤其在聚合数据时,索引视图可节省许多 I/O 系统开销。在某些情况下,索引视图可以在很大程度上提高检索性能,但要记住,索引视图也会降低修改性能。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
vivox100s和x100區別:效能比較及功能解析 vivox100s和x100區別:效能比較及功能解析 Mar 23, 2024 pm 10:27 PM

vivox100s和x100手機都是vivo手機產品線中的代表機型,它們分別代表了vivo在不同時間段內的高端技術水平,因此這兩款手機在設計、性能和功能上均有一定區別。本文將從效能比較和功能解析兩個面向對這兩款手機進行詳細比較,幫助消費者更好地選擇適合自己的手機。首先,我們來看vivox100s和x100在效能上的比較。 vivox100s搭載了最新的

如何在Windows 11中顯示隱藏的效能覆蓋 如何在Windows 11中顯示隱藏的效能覆蓋 Mar 24, 2024 am 09:40 AM

在本教學中,我們將協助您顯示Windows11中隱藏的效能覆蓋。使用Windows11的效能覆蓋功能,您將能夠即時監視您的系統資源。您可以在電腦螢幕上查看即時的CPU使用率、磁碟使用率、GPU使用率、RAM使用率等。當您在玩遊戲或使用大型圖形程式(如影片編輯器)並需要檢查使用特定程式時系統效能受到多大程度的影響時,這是很方便的。儘管有一些優秀的免費軟體可用於監控系統效能,並且一些內建工具(如資源監視器)可用於檢查系統效能,但效能疊加功能也有其優勢。例如,您無需離開目前正在使用的程式或應用程式,也無需

Windows10與Windows11效能比較:哪個更勝一籌? Windows10與Windows11效能比較:哪個更勝一籌? Mar 28, 2024 am 09:00 AM

Windows10與Windows11效能比較:哪個更勝一籌?隨著科技的不斷發展與進步,作業系統也不斷更新和升級。微軟公司作為全球最大的作業系統開發人員之一,其發布的Windows系列作業系統一直備受用戶關注。在2021年,微軟發布了Windows11作業系統,引發了廣泛的討論和關注。那麼,究竟Windows10與Windows11在效能方面有何不同,哪個

PHP與Go語言比較:效能差異大 PHP與Go語言比較:效能差異大 Mar 26, 2024 am 10:48 AM

PHP與Go語言是兩種常用的程式語言,它們有著不同的特色與優勢。其中,效能差異是大家普遍關注的問題。本文將從效能角度對比PHP和Go語言,並透過具體的程式碼範例來展示它們的效能差異。首先,讓我們先簡單介紹一下PHP和Go語言的基本特點。 PHP是一種腳本語言,最初設計用於Web開發,易學易用,廣泛應用於Web開發領域。而Go語言是由Google開發的一種編譯型

本地運作效能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服務,太方便了! 本地運作效能超越 OpenAI Text-Embedding-Ada-002 的 Embedding 服務,太方便了! Apr 15, 2024 am 09:01 AM

Ollama是一款超實用的工具,讓你能夠在本地輕鬆運行Llama2、Mistral、Gemma等開源模型。本文我將介紹如何使用Ollama實現對文本的向量化處理。如果你本地還沒有安裝Ollama,可以閱讀這篇文章。本文我們將使用nomic-embed-text[2]模型。它是一種文字編碼器,在短的上下文和長的上下文任務上,效能超越了OpenAItext-embedding-ada-002和text-embedding-3-small。啟動nomic-embed-text服務當你已經成功安裝好o

PHP 陣列鍵值翻轉:不同方法的效能比較分析 PHP 陣列鍵值翻轉:不同方法的效能比較分析 May 03, 2024 pm 09:03 PM

PHP數組鍵值翻轉方法效能比較顯示:array_flip()函數在大型數組(超過100萬個元素)下比for迴圈效能更優,耗時更短。手動翻轉鍵值的for迴圈方法耗時相對較長。

Win11和Win10系統效能對比,究竟哪一個更勝一籌? Win11和Win10系統效能對比,究竟哪一個更勝一籌? Mar 27, 2024 pm 05:09 PM

一直以來,Windows作業系統一直是人們在個人電腦上使用最為廣泛的作業系統之一,而Windows10長期以來一直是微軟公司的旗艦作業系統,直到最近微軟推出了全新的Windows11系統。隨著Windows11系統的推出,人們對於Windows10與Windows11系統的效能差異開始感興趣,究竟兩者之間哪一個更勝一籌呢?首先,讓我們來看看W

不同Java框架的效能對比 不同Java框架的效能對比 Jun 05, 2024 pm 07:14 PM

不同Java框架的效能比較:RESTAPI請求處理:Vert.x最佳,請求速率達SpringBoot2倍,Dropwizard3倍。資料庫查詢:SpringBoot的HibernateORM優於Vert.x及Dropwizard的ORM。快取操作:Vert.x的Hazelcast客戶端優於SpringBoot及Dropwizard的快取機制。合適框架:根據應用需求選擇,Vert.x適用於高效能Web服務,SpringBoot適用於資料密集型應用,Dropwizard適用於微服務架構。

See all articles