自己动手写CPU之第五阶段(2)OpenMIPS对数据相关问题的解决
将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第16篇,我尽量每周四篇 5.2OpenMIPS 对数据相关问题的解决措施 OpenMIPS 处理器采用数据前推的方法来解决流水线数据相关问题。通过补充完善图 4-4 原始的数据流图,添加部分信号使得可以完成数
将陆续上传本人写的新书《自己动手写CPU》(尚未出版),今天是第16篇,我尽量每周四篇
5.2 OpenMIPS对数据相关问题的解决措施
OpenMIPS处理器采用数据前推的方法来解决流水线数据相关问题。通过补充完善图4-4原始的数据流图,添加部分信号使得可以完成数据前推的工作,如图5-7所示。主要是将执行阶段的结果、访存阶段的结果前推到译码阶段,参与译码阶段选择运算源操作数的过程。

图5-8给出了为实现数据前推而对OpenMIPS系统结构所做的修改。有两个方面。
(1)将处于流水线执行阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段,如图5-8中虚线所示。
(2)将处于流水线访存阶段的指令的运算结果,包括:是否要写目的寄存器wreg_o、要写的目的寄存器地址wd_o、要写入目的寄存器的数据wdata_o等信息送到译码阶段。

为此,译码阶段的ID模块要增加如表5-1所示的接口。
译码阶段的ID模块会依据送入的信息,进行综合判断,解决数据相关,给出最后要参与运算的操作数。ID模块的代码要做如下修改,其中主要修改部分使用加粗、斜体表示。修改后的代码位于本书光盘的Code\Chapter5_1目录下的id.v文件。
module id( ...... //处于执行阶段的指令的运算结果 input wire ex_wreg_i, input wire[`RegBus] ex_wdata_i, input wire[`RegAddrBus] ex_wd_i, //处于访存阶段的指令的运算结果 input wire mem_wreg_i, input wire[`RegBus] mem_wdata_i, input wire[`RegAddrBus] mem_wd_i, ...... //送到执行阶段的源操作数1、源操作数2 output reg[`RegBus] reg1_o, output reg[`RegBus] reg2_o, ...... ); ...... //给reg1_o赋值的过程增加了两种情况: //1、如果Regfile模块读端口1要读取的寄存器就是执行阶段要写的目的寄存器, // 那么直接把执行阶段的结果ex_wdata_i作为reg1_o的值; //2、如果Regfile模块读端口1要读取的寄存器就是访存阶段要写的目的寄存器, // 那么直接把访存阶段的结果mem_wdata_i作为reg1_o的值; always @ (*) begin if(rst == `RstEnable) begin reg1_o <br> <p> 除了修改译码阶段<span>ID</span><span>模块的代码,还要修改顶层模块</span><span>OpenMIPS</span><span>对应的代码,在其中增加图</span><span>5-8</span><span>所示的连接关系。具体修改过程不在书中列出,读者可以参考本书附带光盘的</span><span>Code\</span>Chapter5_1目录下的<span>openmips.v</span><span>文件。(代码会在稍后上传)</span></p> <h2>5.3 <span>测试数据相关问题解决效果</span> </h2> <p> 测试程序如下,其中存在<span>5.1</span><span>节讨论的</span><span>RAW</span><span>相关的三种情况,源文件是本书附带光盘</span><span>Code\</span>Chapter5_1\AsmTest<span>目录下的</span><span>inst_rom.S</span><span>文件。</span></p> <pre class="brush:php;toolbar:false">.org 0x0 .global _start .set noat _start: ori $1,$0,0x1100 # $1 = $0 | 0x1100 = 0x1100 ori $1,$1,0x0020 # $1 = $1 | 0x0020 = 0x1120 ori $1,$1,0x4400 # $1 = $1 | 0x4400 = 0x5520 ori $1,$1,0x0044 # $1 = $1 | 0x0044 = 0x5564
指令的注释给出了预期执行效果。将上述inst_rom.S文件,与第4章实现的Bin2Mem.exe、Makefile、ram.ld这三个文件拷贝到Ubuntu虚拟机中的同一个目录下,打开终端,使用cd命令进入该目录,然后输入make all,即可得到能够用于ModelSim仿真的inst_rom.data文件。
在ModelSim中新建一个工程,添加本书附带光盘Code\Chapter5_1目录下的所有.v文件,然后可以编译。再复制上面得到的inst_rom.data文件到ModelSim工程的目录下,就可以进行仿真了。ModelSim中新建工程、仿真的详细步骤可以参考第2章。
运行仿真,观察寄存器$1值的变化,如图5-9所示,$1的变化符合预期,所以修改后的OpenMIPS正确解决了数据相关问题。

下一步将实现逻辑、移位、空指令,敬请关注!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

1.首先我們右鍵點選任務列空白處,選擇【任務管理器】選項,或右鍵開始徽標,然後再選擇【任務管理器】選項。 2.在開啟的任務管理器介面,我們點選最右邊的【服務】選項卡。 3.在開啟的【服務】選項卡,點選下方的【開啟服務】選項。 4.在開啟的【服務】窗口,右鍵點選【InternetConnectionSharing(ICS)】服務,然後選擇【屬性】選項。 5.在開啟的屬性窗口,將【開啟方式】修改為【禁用】,點選【應用程式】後點選【確定】。 6.點選開始徽標,然後點選關機按鈕,選擇【重啟】,完成電腦重啟就行了。

本站7月28日消息,根據外媒TechRader報道,富士通詳細介紹了計劃於2027年出貨的FUJITSU-MONAKA(以下簡稱MONAKA)處理器。 MONAKACPU基於「雲端原生3D眾核」架構,採用Arm指令集,面向資料中心、邊緣與電信領域,適用於AI運算,能實現大型主機層級的RAS1。富士通表示,MONAKA將在能源效率和性能方面實現飛躍:得益於超低電壓(ULV)製程等技術,該CPU可實現2027年競品2倍的能效,冷卻無需水冷;此外該處理器的應用性能也可達對手2倍。在指令方面,MONAKA配備的向量

英特爾ArrowLake預計將基於與LunarLake相同的處理器架構,這意味著英特爾全新的LionCove效能核心將與經濟體的Skymont效率核心結合。

本站6月1日消息,消息源@CodeCommando今天發布推文,分享了AMD即將在Computex2024活動中的部分演示文檔截圖,推文內容為“AM4永不消亡”,配圖展示了兩款新的Ryzen5000XT系列處理器。根據截圖內容顯示以下兩款產品:Ryzen95900XTRyzen95900XT定位相對高端,這是一款全新的16核心AM4處理器,其時脈速度略低於AMD的Ryzen95950X。 Ryzen75800XT它是AMD現有Ryzen75800X處理器的更快變體,這兩款處理器的主頻最高可達4.8G

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺
