目錄
利用命令行,测试WourdCount程序:
1、创建Wordcount示例文件
2、Map Task的整体流程:
3、Reduce的整体流程:
首頁 資料庫 mysql教程 hadoop学习(六)WordCount示例深度学习MapReduce过程(1)

hadoop学习(六)WordCount示例深度学习MapReduce过程(1)

Jun 07, 2016 pm 03:29 PM
hadoop 學習 深度 範例

花了整整一个下午(6个多小时),整理总结,也算是对这方面有一个深度的了解。日后可以回头多看看。 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功。在终端中用命令创建一个文件夹,简单的向两个文件中各写入一

花了整整一个下午(6个多小时),整理总结,也算是对这方面有一个深度的了解。日后可以回头多看看。

我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功。在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,WourdCount自带WourdCount程序指令,就可以输出写入的那句话各个不同单词的个数。但是这不是这篇博客主要讲的内容,主要是想通过一个简单的Wordcount程序,来认识Hadoop的内部机制。并通过此来深入了解MapReduce的详细过程。在Thinking in BigDate(八)大数据Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解中我们已经很大概梳理一下,Hadoop内部集群架构,并对MapReduce也有初步的了解,这里我们以WourdCount程序来深入的探讨MapReduce的过程。

利用命令行,测试WourdCount程序:

WourdCount程序就是统计文本中字母的个数

1、创建Wordcount示例文件

zhangzhen@ubuntu:~/software$ mkdir input
zhangzhen@ubuntu:~/software$ cd input/
zhangzhen@ubuntu:~/software/input$ echo "I am zhangzhen">test1.txt
zhangzhen@ubuntu:~/software/input$ echo "You are not zhangzhen">test2.txt
zhangzhen@ubuntu:~/software/input$ cd ../hadoop-1.2.1/
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ cd bin
zhangzhen@ubuntu:~/software/hadoop-1.2.1/bin$ ls
hadoop             slaves.sh                  start-mapred.sh           stop-mapred.sh
hadoop-config.sh   start-all.sh               stop-all.sh               task-controller
hadoop-daemon.sh   start-balancer.sh          stop-balancer.sh
hadoop-daemons.sh  start-dfs.sh               stop-dfs.sh
rcc                start-jobhistoryserver.sh  stop-jobhistoryserver.sh
zhangzhen@ubuntu:~/software/hadoop-1.2.1/bin$ jps(确定Hadoop已经起来了)
7101 SecondaryNameNode
7193 JobTracker
7397 TaskTracker
9573 Jps
6871 DataNode
6667 NameNode
zhangzhen@ubuntu:~/software/hadoop-1.2.1/bin$ cd ..
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ ls
bin          data                       hadoop-minicluster-1.2.1.jar  libexec      share
build.xml    docs                       hadoop-test-1.2.1.jar         LICENSE.txt  src
c++          hadoop-ant-1.2.1.jar       hadoop-tools-1.2.1.jar        logs         webapps
CHANGES.txt  hadoop-client-1.2.1.jar    ivy                           NOTICE.txt
conf         hadoop-core-1.2.1.jar      ivy.xml                       README.txt
contrib      hadoop-examples-1.2.1.jar  lib                           sbin
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ bin/hadoop dfs -put ../input in  //把文件上传的hdfa中的in目录中,其实这个说法有误
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ bin/hadoop dfs -ls .in/*
ls: Cannot access .in/*: No such file or directory.
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ bin/hadoop dfs -ls ./in/*
-rw-r--r--   1 zhangzhen supergroup         15 2014-03-22 10:45 /user/zhangzhen/in/test1.txt
-rw-r--r--   1 zhangzhen supergroup         22 2014-03-22 10:45 /user/zhangzhen/in/test2.txt 

登入後複製

注意:Hadoop中是没有当前目录这个概念的。所以上传到hdfs中的文件,我们是不能通过cd命令、ls命令,查看目录中的文件。这里我们通过就是上面和下面命令查看hdfs中文件的方法。

在每个版本中,hadoop-examples-1.2.1.jar的位置不一样,在Hadoop1.2.1版本中,我们hadoop-examples-1.2.1.jar文件是在Hadoop目录中的,这里我们需要把这个hadoop-examples-1.2.1.jar拷贝到/bin 目录中。

执行:利用hadoop-examples-1.2.1.jar执行bin目录下in目录中的文件,并把结果写入到 put 的文件夹。

zhangzhen@ubuntu:~/software$ bin/hadoop jar hadoop-examples-1.2.1.jar wordcount in put

登入後複製

查看输出的结果:

zhangzhen@ubuntu:~/software/hadoop-1.2.1$ bin/hadoop dfs -ls
Found 2 items
drwxr-xr-x   - zhangzhen supergroup          0 2014-03-22 10:45 /user/zhangzhen/in
drwxr-xr-x   - zhangzhen supergroup          0 2014-03-22 10:56 /user/zhangzhen/put
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ bin/hadoop dfs -ls ./put
Found 3 items
-rw-r--r--   1 zhangzhen supergroup          0 2014-03-22 10:56 /user/zhangzhen/put/_SUCCESS
drwxr-xr-x   - zhangzhen supergroup          0 2014-03-22 10:56 /user/zhangzhen/put/_logs  目录
-rw-r--r--   1 zhangzhen supergroup         39 2014-03-22 10:56 /user/zhangzhen/put/part-r-00000   这是文件
zhangzhen@ubuntu:~/software/hadoop-1.2.1/hadoop dfs -cat ./put/*
I      1
You    1
am     1
are    1
not    1
zhangzhen    2
cat: File does not exist: /user/zhangzhen/put/_logs
zhangzhen@ubuntu:~/software/hadoop-1.2.1$ 

登入後複製

上面的结果,就基本可以证明Hadoop搭建是没有问题的。执行hadoop-examples-1.2.1.jar程序,其实是把java程序编译打成一个jar文件,然后直接运行,就可以得到结果。其实这也是以后我们运行java程序的一个方法。把程序编译打包上传,然后运行。还有另一种方面,eclipse连接Hadoop,可以联机测试。两种方法各有优点,不再详述。

运行的程序,我们可以在Hadoop的安装目录中找到源文件,WourdCount.java源代码。

zhangzhen@ubuntu:~/software/hadoop-1.2.1/src/examples/org/apache/hadoop/examples$ pwd 
/home/zhangzhen/software/hadoop-1.2.1/src/examples/org/apache/hadoop/examples 
zhangzhen@ubuntu:~/software/hadoop-1.2.1/src/examples/org/apache/hadoop/examples$ 

登入後複製

下面是把源代码拷到eclipse程序中,利用此代码(并未修改)测试一下实际的数据并得到结果。(注释是对上以一行的解释)

import java.io.IOException;  
import java.util.StringTokenizer;  
  
import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapreduce.Job;  
import org.apache.hadoop.mapreduce.Mapper;  
import org.apache.hadoop.mapreduce.Reducer;  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
import org.apache.hadoop.util.GenericOptionsParser;  
  
public class Wordcount {  
  
  public static class TokenizerMapper   
       extends Mapper<Object, Text, Text, IntWritable>{ 
//规定map中用到的数据类型,这里的Text相当于jdk中的String IntWritable相当于jdk的int类型,
//这样做的原因主要是为了hadoop的数据序化而做的。 
      
    private final static IntWritable one = new IntWritable(1);
//声时一个IntWritable变量,作计数用,每出现一个key,给其一个value=1的值  
    private Text word = new Text();//用来暂存map输出中的key值,Text类型的  
        
    public void map(Object key, Text value, Context context  
                    ) throws IOException, InterruptedException { 
//这就是map函数,它是和Mapper抽象类中的相对应的,此处的Object key,Text value的类型和上边的Object,
//Text是相对应的,而且最好一样,不然的话,多数情况运行时会报错。
      StringTokenizer itr = new StringTokenizer(value.toString());
//Hadoop读入的value是以行为单位的,其key为该行所对应的行号,因为我们要计算每个单词的数目,
//默认以空格作为间隔,故用StringTokenizer辅助做字符串的拆分,也可以用string.split("")来作。
      while (itr.hasMoreTokens()) { //遍历一下每行字符串中的单词 
        word.set(itr.nextToken());  //出现一个单词就给它设成一个key并将其值设为1
        context.write(word, one);   //输出设成的key/value值
//上面就是map打散的过程
      }  
    }  
  }  
    
  public static class IntSumReducer   
       extends Reducer<Text,IntWritable,Text,IntWritable> {
//reduce的静态类,这里和Map中的作用是一样的,设定输入/输出的值的类型
    private IntWritable result = new IntWritable();  
  
    public void reduce(Text key, Iterable<IntWritable> values,   
                       Context context  
                       ) throws IOException, InterruptedException {  
      int sum = 0;  
      for (IntWritable val : values) { 
 //由于map的打散,这里会得到如,{key,values}={"hello",{1,1,....}},这样的集合
        sum += val.get();               
//这里需要逐一将它们的value取出来予以相加,取得总的出现次数,即为汇和
      }  
      result.set(sum);                  //将values的和取得,并设成result对应的值
      context.write(key, result);
//此时的key即为map打散之后输出的key,没有变化,变化的时result,以前得到的是一个数字的集合,
//已经给算出和了,并做为key/value输出。  
    }  
  }  
  
  public static void main(String[] args) throws Exception {  
    Configuration conf = new Configuration();  //取得系统的参数
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();  
    if (otherArgs.length != 2) {               
 //判断一下命令行输入路径/输出路径是否齐全,即是否为两个参数
      System.err.println("Usage: wordcount <in> <out>");  
      System.exit(2);                           //若非两个参数,即退出
    }  
    Job job = new Job(conf, "word count");      
//此程序的执行,在hadoop看来是一个Job,故进行初始化job操作
    job.setJarByClass(Wordcount.class);        
 //可以认为成,此程序要执行MyWordCount.class这个字节码文件
    job.setMapperClass(TokenizerMapper.class); 
//在这个job中,我用TokenizerMapper这个类的map函数
    job.setCombinerClass(IntSumReducer.class);  
    job.setReducerClass(IntSumReducer.class);   
//在这个job中,我用IntSumReducer这个类的reduce函数 
    job.setOutputKeyClass(Text.class);          
//在reduce的输出时,key的输出类型为Text
    job.setOutputValueClass(IntWritable.class);  
//在reduce的输出时,value的输出类型为IntWritable
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));  
//初始化要计算word的文件的路径
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 
//初始化要计算word的文件的之后的结果的输出路径 
    System.exit(job.waitForCompletion(true) ? 0 : 1);
 //提交job到hadoop上去执行了,意思是指如果这个job真正的执行完了则主函数退出了,若没有真正的执行完就退出了。  
  } 
//参考:http://hi.baidu.com/erliang20088/item/ce550f2f088ff1ce0e37f930
}

登入後複製

WourdCount程序中隐藏的秘密

1、具体流程:

1)文件拆分成splits,由于测试用的文件较小,所以每个文件为一个split,并将文件按行分割形成 对,如下图。这一步由MapReduce框架自动完成,其中偏移量(即key值)包括了回车所占的字符数和Linux环境有关。

\

2)将分割好的对交给用户定义的map方法进行处理,生成新的对。

\

3)得到map方法输出的对后,Mapper会将它们按照key值进行排序,并执行Combine过程,将key至相同value值累加,得到Mapper的最终输出结果。

\

2、Map Task的整体流程:

可以概括为5个步骤:

1)Read:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

2)Map:该阶段主要将解析出的key/value交给用户编写的map()函数处理,并产生一系列的key/value。

3)Collect:在用户编写的map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输入结果。在该函数内部,它会将生成的key/value分片(通过Partitioner),并写入一个环形内存缓冲区中。

4)Spill:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并,压缩等操作。

5)Combine:当所有数据处理完成后,Map Task对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

3、Reduce的整体流程:

可以概括为5个步骤:

1)Shuffle:也称Copy阶段。Reduce Task从各个Map Task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阀值,则写到磁盘上,否则直接放到内存中。

2)Merge:在远程拷贝的同时,Reduce Task启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或者磁盘上文件过多。

3)Sort:按照MapReduce语义,用户编写的reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一 起,Hadoop采用了基于排序的策略。由于各个Map Task已经实现了对自己的处理结果进行了局部排序,因此,Reduce Task只需对所有数据进行一次归并排序即可。

4)Reduce:在该阶段中,Reduce Task将每组数据依次交给用户编写的reduce()函数处理。

5)Write:reduce()函数将计算结果写到HDFS。

通过一些博客对WourdCount的介绍示例,总结Map、Reduce的整个过程。加上Thinking in BigDate(八)大数据Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解所将的内容,大致把整个文件数据处理的过程梳理一遍。但是还有很多细节没有讲明。如:Spill、Combine、Shuffle的过程,Shuffle整个MapReduce的核心。接下来,我们更深入了解MapReduce的过程,更深入的了解,便于我们在以后在操作Hadoop集群的过程中,有利于系统调优,甚至修改Hadoop源代码。

Copyright?BUAA
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1322
25
PHP教程
1270
29
C# 教程
1249
24
Oracle DECODE函數詳解及用法範例 Oracle DECODE函數詳解及用法範例 Mar 08, 2024 pm 03:51 PM

Oracle中的DECODE函數是一種條件式,常用於在查詢語句中根據不同的條件傳回不同的結果。本文將詳細介紹DECODE函數的語法、用法和範例程式碼。一、DECODE函數語法DECODE(expr,search1,result1[,search2,result2,...,default])expr:要進行比較的表達式或欄位。 search1,

Go語言的縮排規範及範例 Go語言的縮排規範及範例 Mar 22, 2024 pm 09:33 PM

Go语言的缩进规范及示例Go语言是一种由Google开发的编程语言,它以简洁、清晰的语法著称,其中缩进规范在代码的可读性和美观性方面起着至关重要的作用。本文将介绍Go语言的缩进规范,并通过具体的代码示例进行详细说明。缩进规范在Go语言中,缩进使用制表符(tab)而非空格。每级缩进为一个制表符,通常设置为4个空格的宽度。这样的规范统一了代码风格,使得团队合作编

Pygame入門指南:全面安裝與設定教學課程 Pygame入門指南:全面安裝與設定教學課程 Feb 19, 2024 pm 10:10 PM

從零開始學習Pygame:完整的安裝和配置教程,需要具體程式碼範例引言:Pygame是一個使用Python程式語言開發的開源遊戲開發庫,它提供了豐富的功能和工具,使得開發者可以輕鬆創建各種類型的遊戲。本文將帶您從零開始學習Pygame,並提供完整的安裝和配置教程,以及具體的程式碼範例,讓您快速入門。第一部分:安裝Python和Pygame首先,確保您的電腦上已

一起學習word根號輸入方法 一起學習word根號輸入方法 Mar 19, 2024 pm 08:52 PM

在word編輯文字內容時,有時會需要輸入公式符號。有的小夥子們不知道在word根號輸入的方法,小面就讓小編跟小夥伴們一起分享下word根號輸入的方法教學。希望對小夥伴們有幫助。首先,開啟電腦上的Word軟體,然後開啟要編輯的文件,並將遊標移到需要插入根號的位置,參考下方的圖片範例。 2.選擇【插入】,再選擇符號裡的【公式】。如下方圖片紅色圈的部分內容所示:3.接著選擇下方的【插入新公式】。如下方圖片紅色圈的部分內容所示:4.選擇【根式】,再選擇適當的根號。如下方圖片紅色圈的部分內容所示:

揭秘C語言的吸引力: 發掘程式設計師的潛質 揭秘C語言的吸引力: 發掘程式設計師的潛質 Feb 24, 2024 pm 11:21 PM

學習C語言的魅力:解鎖程式設計師的潛力隨著科技的不斷發展,電腦程式設計已經成為了一個備受關注的領域。在眾多程式語言中,C語言一直以來都備受程式設計師的喜愛。它的簡單、高效以及廣泛應用的特點,使得學習C語言成為了許多人進入程式設計領域的第一步。本文將討論學習C語言的魅力,以及如何透過學習C語言來解鎖程式設計師的潛力。首先,學習C語言的魅力在於其簡潔性。相較於其他程式語言而言,C語

從零開始學習Go語言中的main函數 從零開始學習Go語言中的main函數 Mar 27, 2024 pm 05:03 PM

標題:從零開始學習Go語言中的main函數Go語言作為一種簡潔、高效的程式語言,備受開發者青睞。在Go語言中,main函數是一個入口函數,每個Go程式都必須包含main函數作為程式的入口點。本文將從零開始介紹如何學習Go語言中的main函數,並提供具體的程式碼範例。一、首先,我們需要安裝Go語言的開發環境。可前往官方網站(https://golang.org

PHP 點運算子的運用與實例分析 PHP 點運算子的運用與實例分析 Mar 28, 2024 pm 12:06 PM

PHP點運算子的運用與實例分析在PHP中,點運算子(「.」)是用來連接兩個字串的運算符,它在字串拼接時非常常用且十分靈活。透過使用點運算符,我們可以方便地將多個字串連接起來,構成一個新的字串。以下將透過實例分析來介紹PHP點操作符的運用。一、基本使用方法首先,我們來看一個基本的使用實例。假設有兩個變數$str1和$str2,分別儲存了兩個字

Curl Get指令的範例 Curl Get指令的範例 Mar 20, 2024 pm 06:56 PM

在Linux中,URL或Curl客戶端是一個流行的命令列實用程序,允許您使用HTTPS、HTTP、FTP等多種協定在網路上傳輸資料。它允許您使用其get、post和request方法發送和接收資料。其中,你需要經常使用“get”方法。因此,學習各種方法和各種選項,你可以用來提高你的生產力變得至關重要。 「執行捲曲操作非常簡單,只需輸入幾個簡單的命令即可完成。儘管這看似簡單,但許多用戶並未充分認識到其潛力。因此,這篇簡短指南提供了一些關於在Linux系統中使用“curlget”命令的實例。”Curl

See all articles