首頁 資料庫 mysql教程 coursera Machine Learning Week2 学习笔记

coursera Machine Learning Week2 学习笔记

Jun 07, 2016 pm 03:37 PM
week

Part4: Linear Regression with Multiple Variables 进入多变量线性回归~在看视频的时候发现了视频里面的一个错误:在Normal Equation的第8分钟左右,那个x的上下标写反了,应该是上标为1,2,3,4,下标一直为1. 多变量线性回归其实就是在单变量线性回归的基础上进

Part4: Linear Regression with Multiple Variables

    进入多变量线性回归~在看视频的时候发现了视频里面的一个错误:在Normal Equation的第8分钟左右,那个x的上下标写反了,应该是上标为1,2,3,4,下标一直为1.

    多变量线性回归其实就是在单变量线性回归的基础上进行推广,很多公式都是直接在单变量线性回归的基础上进行矩阵化的改写,下面列出多变量线性回归的公式。

    首先是假设函数:

coursera Machine Learning Week2 学习笔记

    这里第二个公式就是矩阵化的一个写法,θ为一个n+1*1的矩阵,X为一个n+1*m的矩阵(X在原来的基础上在左边加上一列X0=1,另m为元组个数)。

    接下来是代价函数,仍然和单变量线性回归一样:

coursera Machine Learning Week2 学习笔记

    最后是梯度下降法的更新公式,偏导求导之前的公式和单变量线性回归一致:

coursera Machine Learning Week2 学习笔记

    如果把偏导求解出来的话,

coursera Machine Learning Week2 学习笔记

    好了,基本上公式没有太大的变化。这部分视频中还讲解了一些其他的部分:

    数据缩放:简单的来说就是数据的规范化的一种。如果一个属性中数值的范围是1~2000,另一个属性中数值的范围是1~5,那么可以想象这对于计算的时候肯定非常的不方便,算法的运算效率也会降低,所以需要把一些范围很大的数据进行规范化,课程中介绍的方法是

    coursera Machine Learning Week2 学习笔记

    其实还有很多数据规范化的方法,比如z分数规范化:

    coursera Machine Learning Week2 学习笔记

    其中A为x的均值,σ为x的标准差;

    以及小数定标规范化:

coursera Machine Learning Week2 学习笔记

    其中j是使得max(|x'|)


    Learning rate的选择:在梯度下降法中,一个合适的Learning Rate应该能够让代价函数不断的减少,如果发现代价函数不降反升,那么很有可能就是Learning rate过大。同时如果Learning rate过小,会导致算法的运行效率缓慢。如何找到一个合适的Learning rate呢?课程中教授的方法是0.001,0.003,0.01,0.03,0.1,0.3,1这样不断的尝试,每次将上次的Learning rate*3。


    Normal Equation:使用最小二乘法的方法进行θ的计算,公式为

coursera Machine Learning Week2 学习笔记

    课程没有给出证明……我尽力尝试下能否给出这个公式的证明。另外Normal Equation的好处就是无需选择Learning rate,无需迭代,一次完成,在维度n较小(课程中给出的阀值为10000)的时候运算速度比较快,但是后面的很多算法无法应用;而梯度下降法则是相反,而且后面的很多算法需要以梯度下降法作为基础。另如果发现矩阵不可转置,一种可能是x的属性中存在重复(同一个量不同单位比如米和英尺),或者m


Part 5:Octave Tutorial

    介绍Octave的基本用法,这里就不再阐述。


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

說明InnoDB全文搜索功能。 說明InnoDB全文搜索功能。 Apr 02, 2025 pm 06:09 PM

InnoDB的全文搜索功能非常强大,能够显著提高数据库查询效率和处理大量文本数据的能力。1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

如何使用Alter Table語句在MySQL中更改表? 如何使用Alter Table語句在MySQL中更改表? Mar 19, 2025 pm 03:51 PM

本文討論了使用MySQL的Alter Table語句修改表,包括添加/刪除列,重命名表/列以及更改列數據類型。

與MySQL中使用索引相比,全表掃描何時可以更快? 與MySQL中使用索引相比,全表掃描何時可以更快? Apr 09, 2025 am 12:05 AM

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

可以在 Windows 7 上安裝 mysql 嗎 可以在 Windows 7 上安裝 mysql 嗎 Apr 08, 2025 pm 03:21 PM

是的,可以在 Windows 7 上安裝 MySQL,雖然微軟已停止支持 Windows 7,但 MySQL 仍兼容它。不過,安裝過程中需要注意以下幾點:下載適用於 Windows 的 MySQL 安裝程序。選擇合適的 MySQL 版本(社區版或企業版)。安裝過程中選擇適當的安裝目錄和字符集。設置 root 用戶密碼,並妥善保管。連接數據庫進行測試。注意 Windows 7 上的兼容性問題和安全性問題,建議升級到受支持的操作系統。

如何為MySQL連接配置SSL/TLS加密? 如何為MySQL連接配置SSL/TLS加密? Mar 18, 2025 pm 12:01 PM

文章討論了為MySQL配置SSL/TLS加密,包括證書生成和驗證。主要問題是使用自簽名證書的安全含義。[角色計數:159]

哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什麼? 哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什麼? Mar 21, 2025 pm 06:28 PM

文章討論了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比較了它們對初學者和高級用戶的功能和適合性。[159個字符]

InnoDB中的聚類索引和非簇索引(次級索引)之間的差異。 InnoDB中的聚類索引和非簇索引(次級索引)之間的差異。 Apr 02, 2025 pm 06:25 PM

聚集索引和非聚集索引的區別在於:1.聚集索引將數據行存儲在索引結構中,適合按主鍵查詢和範圍查詢。 2.非聚集索引存儲索引鍵值和數據行的指針,適用於非主鍵列查詢。

您如何處理MySQL中的大型數據集? 您如何處理MySQL中的大型數據集? Mar 21, 2025 pm 12:15 PM

文章討論了處理MySQL中大型數據集的策略,包括分區,碎片,索引和查詢優化。

See all articles