目錄
1. 数据插入PK
1.1. 循环插入,执行时间为38026毫秒
1.2.   事务循环插入,执行时间为6640毫秒
1.3.   批量插入,执行时间为220毫秒
1.4.   CTE插入,执行时间也为220毫秒
2.  数据删除PK
2.1.   循环删除,执行时间为1240毫秒
2.2.  批量删除,执行时间为106毫秒
1. 保留需要的数据之新表中->TRUNCATE原表数据->还原之前保留的数据之原表中
2. 新建表结构->批量插入需要保留的数据->DROP原表->重命名新表为原表
首頁 資料庫 mysql教程 sqlserver 删除大数据

sqlserver 删除大数据

Jun 07, 2016 pm 03:39 PM
sqlserver 刪除 數據

一、写在前面 - 想说爱你不容易 为了升级数据库至SQL Server 2008 R2,拿了一台现有的PC做测试,数据库从正式库Restore(3个数据库大小夸张地达到100G),而机器内存只有可怜的4G,不仅要承担DB Server角色,同时也要作为Web Server,可想而知这台机器的命运是

一、写在前面 - 想说爱你不容易

  为了升级数据库至SQL Server 2008 R2,拿了一台现有的PC做测试,数据库从正式库Restore(3个数据库大小夸张地达到100G+),而机器内存只有可怜的4G,不仅要承担DB Server角色,同时也要作为Web Server,可想而知这台机器的命运是及其惨烈的,只要MS SQL Server一启动,内存使用率立马飙升至99%。没办法,只能升内存,两根8G共16G的内存换上,结果还是一样,内存瞬间被秒杀(CPU利用率在0%徘徊)。由于是PC机,内存插槽共俩,目前市面上最大的单根内存为16G(价格1K+),就算买回来估计内存还是不够(卧槽,PC机伤不起啊),看样子别无它法 -- 删数据!!!

  删除数据 - 说的容易, 不就是DELETE吗?靠,如果真这么干,我XXX估计能“知道上海凌晨4点的样子”(KB,Sorry,谁让我是XXX的Programmer,哥在这方面绝对比你牛X),而且估计会暴库(磁盘空间不足,产生的日志文件太大了)。

二、沙场点兵 - 众里寻他千百度

  为了更好地阐述我所遇到的困难和问题,有必要做一些必要的测试和说明,同时这也是对如何解决问题的一种探究。因为毕竟这个问题的根本是如何来更好更快的操作数据,说到底就是DELETE、UPDATE、INSERT、TRUNCATE、DROP等的优化操作组合,我们的目的就是找出最优最快最好的方法。为了便于测试,准备了一张测试表Employee

sqlserver 删除大数据

<span>--</span><span>Create table Employee</span>
<span>CREATE</span> <span>TABLE</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span> (
    <span>[</span><span>EmployeeNo</span><span>]</span> <span>INT</span> <span>PRIMARY</span> <span>KEY</span>,
    <span>[</span><span>EmployeeName</span><span>]</span> <span>[</span><span>nvarchar</span><span>]</span>(<span><strong>50</strong></span>) <span>NULL</span>,
    <span>[</span><span>CreateUser</span><span>]</span> <span>[</span><span>nvarchar</span><span>]</span>(<span><strong>50</strong></span>) <span>NULL</span>,
    <span>[</span><span>CreateDatetime</span><span>]</span> <span>[</span><span>datetime</span><span>]</span> <span>NULL</span>
);
登入後複製

sqlserver 删除大数据

1. 数据插入PK

1.1. 循环插入,执行时间为38026毫秒

sqlserver 删除大数据

<span>--</span><span>循环插入</span>
<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Index</span> <span>INT</span> <span>=</span> <span><strong>1</strong></span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>WHILE</span> <span>@Index</span> <span> <span><strong>100000</strong></span>
<span>BEGIN</span>
    <span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>VALUES</span>(<span>@Index</span>, <span>'</span><span>Employee_</span><span>'</span> <span>+</span> <span>CAST</span>(<span>@Index</span> <span>AS</span> <span>CHAR</span>(<span><strong>6</strong></span>)), <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>());
    <span>SET</span> <span>@Index</span> <span>=</span> <span>@Index</span> <span>+</span> <span><strong>1</strong></span>;
<span>END</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;</span>
登入後複製

sqlserver 删除大数据

1.2.   事务循环插入,执行时间为6640毫秒

sqlserver 删除大数据

<span>--</span><span>事务循环</span>
<span>BEGIN</span> <span>TRAN</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Index</span> <span>INT</span> <span>=</span> <span><strong>1</strong></span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>WHILE</span> <span>@Index</span> <span> <span><strong>100000</strong></span>
<span>BEGIN</span>
    <span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>VALUES</span>(<span>@Index</span>, <span>'</span><span>Employee_</span><span>'</span> <span>+</span> <span>CAST</span>(<span>@Index</span> <span>AS</span> <span>CHAR</span>(<span><strong>6</strong></span>)), <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>());
    <span>SET</span> <span>@Index</span> <span>=</span> <span>@Index</span> <span>+</span> <span><strong>1</strong></span>;
<span>END</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;

<span>COMMIT</span>;</span>
登入後複製

sqlserver 删除大数据

1.3.   批量插入,执行时间为220毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>(EmployeeNo, EmployeeName, CreateUser, CreateDatetime)
<span>SELECT</span> <span>TOP</span>(<span><strong>100000</strong></span>) EmployeeNo <span>=</span> ROW_NUMBER() <span>OVER</span> (<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>), <span>'</span><span>Employee_</span><span>'</span>, <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>()
<span>FROM</span> SYS.COLUMNS <span>AS</span> C1 <span>CROSS</span> <span>JOIN</span> SYS.COLUMNS <span>AS</span> C2
<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
登入後複製

sqlserver 删除大数据

1.4.   CTE插入,执行时间也为220毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

;<span>WITH</span> CTE(EmployeeNo, EmployeeName, CreateUser, CreateDatetime) <span>AS</span>(
    <span>SELECT</span> <span>TOP</span>(<span><strong>100000</strong></span>) EmployeeNo <span>=</span> ROW_NUMBER() <span>OVER</span> (<span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>), <span>'</span><span>Employee_</span><span>'</span>, <span>'</span><span>system</span><span>'</span>, <span>GETDATE</span>()
    <span>FROM</span> SYS.COLUMNS <span>AS</span> C1 <span>CROSS</span> <span>JOIN</span> SYS.COLUMNS <span>AS</span> C2
    <span>ORDER</span> <span>BY</span> C1.<span>[</span><span>OBJECT_ID</span><span>]</span>
)
<span>INSERT</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span> <span>SELECT</span> EmployeeNo, EmployeeName, CreateUser, CreateDatetime <span>FROM</span> CTE;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
登入後複製

sqlserver 删除大数据

小结:

  • 按执行时间,效率依次为:CTE和批量插入效率相当,速度最快,事务插入次之,单循环插入速度最慢;
  • 单循环插入速度最慢是由于INSERT每次都有日志,事务插入大大减少了写入日志次数,批量插入只有一次日志,CTE的基础是CLR,善用速度是最快的。

 

2.  数据删除PK

2.1.   循环删除,执行时间为1240毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>DELETE</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
登入後複製

sqlserver 删除大数据

2.2.  批量删除,执行时间为106毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>SET</span> <span>ROWCOUNT</span> <span><strong>100000</strong></span>;

<span>WHILE</span> <span><strong>1</strong></span> <span>=</span> <span><strong>1</strong></span>
<span>BEGIN</span>
    <span>BEGIN</span> <span>TRAN</span>
    <span>DELETE</span> <span>FROM</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;
    <span>COMMIT</span>
    <span>IF</span> <span><strong>@@ROWCOUNT</strong></span> <span>=</span> <span><strong>0</strong></span>
        <span>BREAK</span>;
<span>END</span>

<span>SET</span> <span>ROWCOUNT</span> <span><strong>0</strong></span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
登入後複製

sqlserver 删除大数据

2.3.  TRUNCATE删除,执行时间为0毫秒

sqlserver 删除大数据

<span>SET</span> <span>STATISTICS</span> TIME <span>ON</span>;
<span>DECLARE</span> <span>@Timer</span> <span>DATETIME</span> <span>=</span> <span>GETDATE</span>();

<span>TRUNCATE</span> <span>TABLE</span> <span>[</span><span>dbo</span><span>]</span>.<span>[</span><span>Employee</span><span>]</span>;

<span>SELECT</span> <span>DATEDIFF</span>(MS, <span>@Timer</span>, <span>GETDATE</span>()) <span>AS</span> <span>[</span><span>执行时间(毫秒)</span><span>]</span>;
<span>SET</span> <span>STATISTICS</span> TIME <span>OFF</span>;
登入後複製

sqlserver 删除大数据

 小结:

  • TRUNCATE太快了,清除10W数据一点没压力,批量删除次之,最后的DELTE太慢了;
  • TRUNCATE快是因为它属于DDL语句,只会产生极少的日志,普通的DELETE不仅会产生日志,而且会锁记录。

 

三、磨刀霍霍 - 犹抱琵琶半遮面

  由上面的第二点我们知道,插入最快和删除最快的方式分别是批量插入和TRUNCATE,所以为了达到删除大数据的目的,我们也将采用这两种方式的组合,其中心思想是先把需要保留的数据存放之新表中,然后TRUNCATE原表中的数据,最后再批量把数据插回去,当然实现方式也可以随便变通。

1. 保留需要的数据之新表中->TRUNCATE原表数据->还原之前保留的数据之原表中

  脚本类似如下

<span>SELECT</span> <span>*</span> <span>INTO</span> #keep <span>FROM</span> Original <span>WHERE</span> CreateDate <span>></span> <span>'</span><span>2011-12-31</span><span>'</span>
<span>TRUNCATE</span> <span>TABLE</span> Original
<span>INSERT</span> Original <span>SELECT</span> <span>*</span> <span>FROM</span> #keep
登入後複製

  第一条语句会把所有要保留的数据先存放至表#keep中(表#keep无需手工创建,由SELECT INTO生效),#keep会Copy原始表Original的表结构。PS:如果你只想创建表结构,但不拷贝数据,则对应的脚本如下

<span>SELECT</span> <span>*</span> <span>INTO</span> #keep <span>FROM</span> Original <span>WHERE</span> <span><strong>1</strong></span> <span>=</span> <span><strong>2</strong></span>
登入後複製

  第二条语句用于清除整个表中数据,产生的日志文件基本可以忽略;第三条语句用于还原保留数据。

几点说明:

  • 你可以不用SELECT INTO,自己通过写脚本(或拷贝现有表)来创建#keep,但是后者有一个弊端,即无法通过SQL脚本来获得对应的表生成Script(我的意思是和原有表完全一致的脚本,即基本列,属性,索引,约束等),而且当要操作的表比较多时,估计你肯定会抓狂;
  • 既然第一点欠妥,那考虑新建一个同样的数据库怎么样?既可以使用现有脚本,而且生成的数据库基本一致,但是我告诉你最好别这么做,因为第一要跨库,第二,你得准备足够的磁盘空间。

 

2. 新建表结构->批量插入需要保留的数据->DROP原表->重命名新表为原表

  CREATE TABLE #keep AS (xxx) xxx -- 使用上面提到的方法(使用既有表的创建脚本),但是不能够保证完全一致;

  INSERT #keep SELECT * FROM Original where clause

  DROP TBALE Original

  EXEC SP_RENAME '#keep','Original'

  这种方式比第一种方法略快点,因为省略了数据还原(即最后一步的数据恢复),但是稍微麻烦点,因为你需要创建一张和以前原有一模一样的表结构,包括基本列、属性、约束、索性等等。

三、数据收缩 - 秋风少落叶

   数据删除后,发现数据库占用空间大小并没有发生变化,此时我们就用借助强悍的数据收缩功能了,脚本如下,运行时间不定,取决于你的数据库大小,多则几十分钟,少则瞬间秒杀

<span>DBCC</span> SHRINKDATABASE(<span>DB_NAME</span>)
登入後複製
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

sqlserver怎麼匯入mdf文件 sqlserver怎麼匯入mdf文件 Apr 08, 2024 am 11:41 AM

匯入步驟如下:將 MDF 檔案複製到 SQL Server 的資料目錄(通常為 C:\Program Files\Microsoft SQL Server\MSSQL\DATA)。在 SQL Server Management Studio(SSMS)中,開啟資料庫並選擇「附加」。點選“新增”按鈕,選擇 MDF 檔案。確認資料庫名稱,點選確定按鈕即可。

sqlserver資料庫中已存在名為的物件怎麼解決 sqlserver資料庫中已存在名為的物件怎麼解決 Apr 05, 2024 pm 09:42 PM

對於 SQL Server 資料庫中已存在同名對象,需要採取下列步驟:確認物件類型(表格、檢視、預存程序)。如果物件為空,可使用 IF NOT EXISTS 跳過建立。如果物件有數據,使用不同名稱或修改結構。使用 DROP 刪除現有物件(謹慎操作,建議備份)。檢查架構更改,確保沒有引用刪除或重新命名的物件。

微信拉黑再刪除永久加不上是真的嗎 微信拉黑再刪除永久加不上是真的嗎 Apr 08, 2024 am 11:41 AM

1.首先,拉黑再刪除永久加不上是假的,拉黑刪除後想要再加對方,只要對方同意即可。 2.如果用戶將某人封鎖,對方將無法向用戶發送訊息、查看用戶的朋友圈、與用戶通話。 3.封鎖並不意味著將對方從用戶的微信聯絡人清單中刪除。 4.如果用戶在封鎖後又將對方從用戶的微信聯絡人清單中刪除,那麼在刪除後是沒有辦法恢復的。 5.如果用戶想再加入對方為好友,需要對方同意並重新新增使用者。

怎麼查看sqlserver連接埠號 怎麼查看sqlserver連接埠號 Apr 05, 2024 pm 09:57 PM

若要查看 SQL Server 連接埠號碼:開啟 SSMS,連線到伺服器。在物件資源管理器中找到伺服器名稱,右鍵單擊它,然後選擇“屬性”。在「連線」標籤中,查看「TCP 連接埠」欄位。

sqlserver誤刪資料庫怎麼恢復 sqlserver誤刪資料庫怎麼恢復 Apr 05, 2024 pm 10:39 PM

若誤刪 SQL Server 資料庫,可採取下列步驟還原:停止資料庫活動;備份日誌檔案;檢查資料庫日誌;復原選項:從備份還原;從交易日誌還原;使用 DBCC CHECKDB;使用第三方工具。請定期備份資料庫並啟用交易日誌以防止資料遺失。

sqlserver服務無法啟動怎麼辦 sqlserver服務無法啟動怎麼辦 Apr 05, 2024 pm 10:00 PM

當 SQL Server 服務無法啟動時,可採取下列步驟解決:檢查錯誤日誌以確定根本原因。確保服務帳戶具有啟動服務的權限。檢查依賴項服務是否正在執行。禁用防毒軟體。修復 SQL Server 安裝。如果修復不起作用,重新安裝 SQL Server。

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

sqlserver安裝失敗怎麼樣刪除乾淨 sqlserver安裝失敗怎麼樣刪除乾淨 Apr 05, 2024 pm 11:27 PM

如果 SQL Server 安裝失敗,可透過下列步驟清理:解除安裝 SQL Server刪除註冊表項刪除檔案和資料夾重新啟動計算機

See all articles