Access PostgreSQL with Python
http://wiki.postgresql.org/wiki/Psycopg2_Tutorial There are any number of programming languages available for you to use with PostgreSQL. One could argue that PostgreSQL as an Open Source database has one of the largest libraries of Applic
http://wiki.postgresql.org/wiki/Psycopg2_Tutorial
There are any number of programming languages available for you to use with PostgreSQL. One could argue that PostgreSQL as an Open Source database has one of the largest libraries of Application Programmable Interfaces (API) available for various languages.
One such language is Python and it happens to be one of my favored languages. I use it for almost all hacking that I do. Why? Well to be honest it is because I am not that great of a programmer. I am a database administrator and operating system consultant by trade. Python ensures that the code that I write is readable by other more talented programmers 6 months from when I stopped working on it.
Nine times out of ten, when I am using Python, I am using the language to communicate with a PostgreSQL database. My driver of choice when doing so is called Psycopg. Recently Psycopg2 has been under heavy development and is currently in Beta 4. It is said that this will be the last Beta. Like the first release of Pyscopg the driver is designed to be lightweight, fast.
The following article discusses how to connect to PostgreSQL with Psycopg2 and also illustrates some of the nice features that come with the driver. The test platform for this article is Psycopg2, Python 2.4, and PostgreSQL 8.1dev.
Psycopg2 is a DB API 2.0 compliant PostgreSQL driver that is actively developed. It is designed for multi-threaded applications and manages its own connection pool. Other interesting features of the adapter are that if you are using the PostgreSQL array data type, Psycopg will automatically convert a result using that data type to a Python list.
The following discusses specific use of Psycopg. It does not try to implement a lot of Object Orientated goodness but to provide clear and concise syntactical examples of uses the driver with PostgreSQL. Making the initial connection:
#!/usr/bin/python2.4 # # Small script to show PostgreSQL and Pyscopg together # import psycopg2 try: conn = psycopg2.connect("dbname='template1' user='dbuser' host='localhost' password='dbpass'") except: print "I am unable to connect to the database"
The above will import the adapter and try to connect to the database. If the connection fails a print statement will occur to STDOUT. You could also use the exception to try the connection again with different parameters if you like.
The next step is to define a cursor to work with. It is important to note that Python/Psycopg cursors are not cursors as defined by PostgreSQL. They are completely different beasts.
cur = conn.cursor()
Now that we have the cursor defined we can execute a query.
cur.execute("""SELECT datname from pg_database""")
When you have executed your query you need to have a list [variable?] to put your results in.
rows = cur.fetchall()
Now all the results from our query are within the variable named rows. Using this variable you can start processing the results. To print the screen you could do the following.
print "\nShow me the databases:\n" for row in rows: print " ", row[0]
Everything we just covered should work with any database that Python can access. Now let's review some of the finer points available. PostgreSQL does not have an autocommit facility which means that all queries will execute within a transaction.
Execution within a transaction is a very good thing, it ensures data integrity and allows for appropriate error handling. However there are queries that can not be run from within a transaction. Take the following example.
#/usr/bin/python2.4 # # import psycopg2 # Try to connect try: conn=psycopg2.connect("dbname='template1' user='dbuser' password='mypass'") except: print "I am unable to connect to the database." cur = conn.cursor() try: cur.execute("""DROP DATABASE foo_test""") except: print "I can't drop our test database!"
This code would actually fail with the printed message of "I can't drop our test database!" PostgreSQL can not drop databases within a transaction, it is an all or nothing command. If you want to drop the database you would need to change the isolation level of the database this is done using the following.
conn.set_isolation_level(0)
You would place the above immediately preceding the DROP DATABASE cursor execution.
The psycopg2 adapter also has the ability to deal with some of the special data types that PostgreSQL has available. One such example is arrays. Let's review the table below:
Table "public.bar" Column | Type | Modifiers --------+--------+----------------------------------------------------- id | bigint | not null default nextval('public.bar_id_seq'::text) notes | text[] | Indexes: "bar_pkey" PRIMARY KEY, btree (id)
The notes column in the bar table is of type text[]. The [] has special meaning in PostgreSQL. The [] represents that the type is not just text but an array of text. To insert values into this table you would use a statement like the following.
foo=# insert into bar(notes) values ('{An array of text, Another array of text}');
Which when selected from the table would have the following representation.
foo=# select * from bar; id | notes ----+---------------------------------------------- 2 | {"An array of text","Another array of text"} (1 row)
Some languages and database drivers would insist that you manually create a routine to parse the above array output. Psycopg2 does not force you to do that. Instead it converts the array into a Python list.
#/usr/bin/python2.4 # # import psycopg2 # Try to connect try: conn=psycopg2.connect("dbname='foo' user='dbuser' password='mypass'") except: print "I am unable to connect to the database." cur = conn.cursor() try: cur.execute("""SELECT * from bar""") except: print "I can't SELECT from bar" rows = cur.fetchall() print "\nRows: \n" for row in rows: print " ", row[1]
When the script was executed the following output would be presented.
[jd@jd ~]$ python test.py Rows: ['An array of text', 'Another array of text']
You could then access the list in Python with something similar to the following.
#/usr/bin/python2.4 # # import psycopg2 # Try to connect try: conn=psycopg2.connect("dbname='foo' user='dbuser' password='mypass'") except: print "I am unable to connect to the database." cur = conn.cursor() try: cur.execute("""SELECT * from bar""") except: print "I can't SELECT from bar" rows = cur.fetchall() for row in rows: print " ", row[1][1]
The above would output the following.
Rows: Another array of text
Some programmers would prefer to not use the numeric representation of the column. For example row[1][1], instead it can be easier to use a dictionary. Using the example with slight modification.
#/usr/bin/python2.4 # # # load the adapter import psycopg2 # load the psycopg extras module import psycopg2.extras # Try to connect try: conn=psycopg2.connect("dbname='foo' user='dbuser' password='mypass'") except: print "I am unable to connect to the database." # If we are accessing the rows via column name instead of position we # need to add the arguments to conn.cursor. cur = conn.cursor(cursor_factory=psycopg2.extras.DictCursor) try: cur.execute("""SELECT * from bar""") except: print "I can't SELECT from bar" # # Note that below we are accessing the row via the column name. rows = cur.fetchall() for row in rows: print " ", row['notes'][1]
The above would output the following.
Rows: Another array of text
Notice that we did not use row[1] but instead used row['notes'] which signifies the notes column within the bar table.
A last item I would like to show you is how to insert multiple rows using a dictionary. If you had the following:
namedict = ({"first_name":"Joshua", "last_name":"Drake"}, {"first_name":"Steven", "last_name":"Foo"}, {"first_name":"David", "last_name":"Bar"})
You could easily insert all three rows within the dictionary by using:
cur = conn.cursor() cur.executemany("""INSERT INTO bar(first_name,last_name) VALUES (%(first_name)s, %(last_name)s)""", namedict)
The cur.executemany statement will automatically iterate through the dictionary and execute the INSERT query for each row.
The only downside that I run into with Pyscopg2 and PostgreSQL is it is a little behind in terms of server side support functions like server side prepared queries but it is said that the author is expecting to implement these features in the near future.

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vProcesserazrabotkiveb被固定,мнелостольностьстьс粹餾標д都LeavallySumballanceFriablanceFaumDoptoMatification,Čtookazalovnetakprosto,kakaožidal.posenesko

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。Golang以其并发模型和高效性能著称,Python则以简洁语法和丰富库生态系统著称。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。
