数据挖掘方面重要会议的最佳paper集合
数据挖掘方面重要会议的最佳paper集合,后续将陆续分析一下内容: 主要有KDD、SIGMOD、VLDB、ICML、SIGIR KDD (Data Mining) 2013 Simple and Deterministic Matrix Sketching Edo Liberty, Yahoo! Research 2012 Searching and Mining Trillions of Time Se
数据挖掘方面重要会议的最佳paper集合,后续将陆续分析一下内容:
主要有KDD、SIGMOD、VLDB、ICML、SIGIR
KDD (Data Mining) |
||
2013 |
Simple and Deterministic Matrix Sketching |
Edo Liberty, Yahoo! Research |
2012 |
Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping |
Thanawin Rakthanmanon, University of California Riverside; et al. |
2011 |
Leakage in Data Mining: Formulation, Detection, and Avoidance |
Shachar Kaufman, Tel-Aviv University; et al. |
2010 |
Large linear classification when data cannot fit in memory |
Hsiang-Fu Yu, National Taiwan University; et al. |
Connecting the dots between news articles |
Dafna Shahaf & Carlos Guestrin, Carnegie Mellon University |
|
2009 |
Collaborative Filtering with Temporal Dynamics |
Yehuda Koren, Yahoo! Research |
2008 |
Fastanova: an efficient algorithm for genome-wide association study |
Xiang Zhang, University of North Carolina at Chapel Hill; et al. |
2007 |
Predictive discrete latent factor models for large scale dyadic data |
Deepak Agarwal & Srujana Merugu, Yahoo! Research |
2006 |
Training linear SVMs in linear time |
Thorsten Joachims, Cornell University |
2005 |
Graphs over time: densification laws, shrinking diameters and possible explanations |
Jure Leskovec, Carnegie Mellon University; et al. |
2004 |
A probabilistic framework for semi-supervised clustering |
Sugato Basu, University of Texas at Austin; et al. |
2003 |
Maximizing the spread of influence through a social network |
David Kempe, Cornell University; et al. |
2002 |
Pattern discovery in sequences under a Markov assumption |
Darya Chudova & Padhraic Smyth, University of California Irvine |
2001 |
Robust space transformations for distance-based operations |
Edwin M. Knorr, University of British Columbia; et al. |
2000 |
Hancock: a language for extracting signatures from data streams |
Corinna Cortes, AT&T Laboratories; et al. |
1999 |
MetaCost: a general method for making classifiers cost-sensitive |
Pedro Domingos, Universidade Técnica de Lisboa |
1998 |
Occam's Two Razors: The Sharp and the Blunt |
Pedro Domingos, Universidade Técnica de Lisboa |
1997 |
Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Di... |
Foster Provost & Tom Fawcett, NYNEX Science and Technology |
SIGMOD (Databases) |
||
2013 |
Massive Graph Triangulation |
Xiaocheng Hu, The Chinese University of Hong Kong; et al. |
2012 |
High-Performance Complex Event Processing over XML Streams |
Barzan Mozafari, Massachusetts Institute of Technology; et al. |
2011 |
Entangled Queries: Enabling Declarative Data-Driven Coordination |
Nitin Gupta, Cornell University; et al. |
2010 |
FAST: fast architecture sensitive tree search on modern CPUs and GPUs |
Changkyu Kim, Intel; et al. |
2009 |
Generating example data for dataflow programs |
Christopher Olston, Yahoo! Research; et al. |
2008 |
Serializable isolation for snapshot databases |
Michael J. Cahill, University of Sydney; et al. |
Scalable Network Distance Browsing in Spatial Databases |
Hanan Samet, University of Maryland; et al. |
|
2007 |
Compiling mappings to bridge applications and databases |
Sergey Melnik, Microsoft Research; et al. |
Scalable Approximate Query Processing with the DBO Engine |
Christopher Jermaine, University of Florida; et al. |
|
2006 |
To search or to crawl?: towards a query optimizer for text-centric tasks |
Panagiotis G. Ipeirotis, New York University; et al. |
2004 |
Indexing spatio-temporal trajectories with Chebyshev polynomials |
Yuhan Cai & Raymond T. Ng, University of British Columbia |
2003 |
Spreadsheets in RDBMS for OLAP |
Andrew Witkowski, Oracle; et al. |
2001 |
Locally adaptive dimensionality reduction for indexing large time series databases |
Eamonn Keogh, University of California Irvine; et al. |
2000 |
XMill: an efficient compressor for XML data |
Hartmut Liefke, University of Pennsylvania |
1999 |
DynaMat: a dynamic view management system for data warehouses |
Yannis Kotidis & Nick Roussopoulos, University of Maryland |
1998 |
Efficient transparent application recovery in client-server information systems |
David Lomet & Gerhard Weikum, Microsoft Research |
Integrating association rule mining with relational database systems: alternatives and implications |
Sunita Sarawagi, IBM Research; et al. |
|
1997 |
Fast parallel similarity search in multimedia databases |
Stefan Berchtold, University of Munich; et al. |
1996 |
Implementing data cubes efficiently |
Venky Harinarayan, Stanford University; et al. |
VLDB (Databases) |
||
2013 |
DisC Diversity: Result Diversification based on Dissimilarity and Coverage |
Marina Drosou & Evaggelia Pitoura, University of Ioannina |
2012 |
Dense Subgraph Maintenance under Streaming Edge Weight Updates for Real-time Story Identification |
Albert Angel, University of Toronto; et al. |
2011 |
RemusDB: Transparent High-Availability for Database Systems |
Umar Farooq Minhas, University of Waterloo; et al. |
2010 |
Towards Certain Fixes with Editing Rules and Master Data |
Shuai Ma, University of Edinburgh; et al. |
2009 |
A Unified Approach to Ranking in Probabilistic Databases |
Jian Li, University of Maryland; et al. |
2008 |
Finding Frequent Items in Data Streams |
Graham Cormode & Marios Hadjieleftheriou, AT&T Laboratories |
Constrained Physical Design Tuning |
Nicolas Bruno & Surajit Chaudhuri, Microsoft Research |
|
2007 |
Scalable Semantic Web Data Management Using Vertical Partitioning |
Daniel J. Abadi, Massachusetts Institute of Technology; et al. |
2006 |
Trustworthy Keyword Search for Regulatory-Compliant Records Retention |
Soumyadeb Mitra, University of Illinois at Urbana-Champaign; et al. |
2005 |
Cache-conscious Frequent Pattern Mining on a Modern Processor |
Amol Ghoting, Ohio State University; et al. |
2004 |
Model-Driven Data Acquisition in Sensor Networks |
Amol Deshpande, University of California Berkeley; et al. |
2001 |
Weaving Relations for Cache Performance |
Anastassia Ailamaki, Carnegie Mellon University; et al. |
1997 |
Integrating Reliable Memory in Databases |
Wee Teck Ng & Peter M. Chen, University of Michigan |
ICML (Machine Learning) |
||
2013 |
Vanishing Component Analysis |
Roi Livni, The Hebrew University of Jerusalum; et al. |
Fast Semidifferential-based Submodular Function Optimization |
Rishabh Iyer, University of Washington; et al. |
|
2012 |
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring |
Sungjin Ahn, University of California Irvine; et al. |
2011 |
Computational Rationalization: The Inverse Equilibrium Problem |
Kevin Waugh, Carnegie Mellon University; et al. |
2010 |
Hilbert Space Embeddings of Hidden Markov Models |
Le Song, Carnegie Mellon University; et al. |
2009 |
Structure preserving embedding |
Blake Shaw & Tony Jebara, Columbia University |
2008 |
SVM Optimization: Inverse Dependence on Training Set Size |
Shai Shalev-Shwartz & Nathan Srebro, Toyota Technological Institute at Chicago |
2007 |
Information-theoretic metric learning |
Jason V. Davis, University of Texas at Austin; et al. |
2006 |
Trading convexity for scalability |
Ronan Collobert, NEC Labs America; et al. |
2005 |
A support vector method for multivariate performance measures |
Thorsten Joachims, Cornell University |
1999 |
Least-Squares Temporal Difference Learning |
Justin A. Boyan, NASA Ames Research Center |
SIGIR (Information Retrieval) |
||
2013 |
Beliefs and Biases in Web Search |
Ryen W. White, Microsoft Research |
2012 |
Time-Based Calibration of Effectiveness Measures |
Mark Smucker & Charles Clarke, University of Waterloo |
2011 |
Find It If You Can: A Game for Modeling Different Types of Web Search Success Using Interaction Data |
Mikhail Ageev, Moscow State University; et al. |
2010 |
Assessing the Scenic Route: Measuring the Value of Search Trails in Web Logs |
Ryen W. White, Microsoft Research |
2009 |
Sources of evidence for vertical selection |
Jaime Arguello, Carnegie Mellon University; et al. |
2008 |
Algorithmic Mediation for Collaborative Exploratory Search |
Jeremy Pickens, FX Palo Alto Lab; et al. |
2007 |
Studying the Use of Popular Destinations to Enhance Web Search Interaction |
Ryen W. White, Microsoft Research; et al. |
2006 |
Minimal Test Collections for Retrieval Evaluation |
Ben Carterette, University of Massachusetts Amherst; et al. |
2005 |
Learning to estimate query difficulty: including applications to missing content detection and dis... |
Elad Yom-Tov, IBM Research; et al. |
2004 |
A Formal Study of Information Retrieval Heuristics |
Hui Fang, University of Illinois at Urbana-Champaign; et al. |
2003 |
Re-examining the potential effectiveness of interactive query expansion |
Ian Ruthven, University of Strathclyde |
2002 |
Novelty and redundancy detection in adaptive filtering |
Yi Zhang, Carnegie Mellon University; et al. |
2001 |
Temporal summaries of new topics |
James Allan, University of Massachusetts Amherst; et al. |
2000 |
IR evaluation methods for retrieving highly relevant documents |
Kalervo J?rvelin & Jaana Kek?l?inen, University of Tampere |
1999 |
Cross-language information retrieval based on parallel texts and automatic mining of parallel text... |
Jian-Yun Nie, Université de Montréal; et al. |
1998 |
A theory of term weighting based on exploratory data analysis |
Warren R. Greiff, University of Massachusetts Amherst |
1997 |
Feature selection, perceptron learning, and a usability case study for text categorization |
Hwee Tou Ng, DSO National Laboratories; et al. |
1996 |
Retrieving spoken documents by combining multiple index sources |
Gareth Jones, University of Cambridge; et al. |
推荐一个网站,感谢作者的努力搜集,主要是各种顶级会议的最佳论文集合。
http://jeffhuang.com/best_paper_awards.html

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

1.處理器在選擇電腦配置時,處理器是至關重要的組件之一。對於玩CS這樣的遊戲來說,處理器的效能直接影響遊戲的流暢度和反應速度。建議選擇IntelCorei5或i7系列的處理器,因為它們具有強大的多核心處理能力和高頻率,可以輕鬆應對CS的高要求。 2.顯示卡顯示卡是遊戲表現的重要因素之一。對於射擊遊戲如CS而言,顯示卡的表現直接影響遊戲畫面的清晰度和流暢度。建議選擇NVIDIAGeForceGTX系列或AMDRadeonRX系列的顯示卡,它們具備出色的圖形處理能力和高幀率輸出,能夠提供更好的遊戲體驗3.內存電

在Go語言中難以實現類似集合的功能,是困擾許多開發者的問題。相較於其他程式語言如Python或Java,Go語言並沒有內建的集合類型,如set、map等,這給開發者在實作集合功能時帶來了一些挑戰。首先,讓我們來看看為何在Go語言中難以直接實現類似集合的功能。在Go語言中,最常用的資料結構是slice(切片)和map(映射),它們可以完成類似集合的功能,但

隱馬可夫模型(HMM)是用於對序列資料建模的強大統計模型類型。它們在語音辨識、自然語言處理、金融和生物資訊學等眾多領域都有用途。 Python是一種多功能程式語言,提供了一系列用於實作HMM的函式庫。在本文中,我們將發現用於HMM的獨特Python庫,並評估它們的功能、性能和易用性,遲早會揭示滿足您需求的最佳選擇。隱馬可夫模型入門在深入了解這些函式庫之前,讓我們先簡單回顧一下HMM的概念。 HMM是一種機率模型,表示系統隨時間在隱藏狀態之間轉換的情況。它由以下部分組成- 一組隱藏狀態初始狀態機率分佈狀態轉

隨著大數據和資料探勘的興起,越來越多的程式語言開始支援資料探勘的功能。 Go語言作為一種快速、安全、高效的程式語言,也可以用於資料探勘。那麼,如何使用Go語言進行資料探勘呢?以下是一些重要的步驟和技術。數據獲取首先,你需要取得數據。這可以透過各種途徑實現,例如爬取網頁上的資訊、使用API取得資料、從資料庫讀取資料等等。 Go語言自備了豐富的HTTP

Java是一種功能強大的程式語言,廣泛應用於各類軟體開發。在Java開發中,經常會涉及到對集合進行排序的場景。然而,如果不對集合排序進行效能最佳化,可能會導致程式的執行效率下降。本文將探討如何優化Java集合排序的效能。一、選擇適當的集合類別在Java中,有多種集合類別可以用來進行排序,如ArrayList、LinkedList、TreeSet等。不同的集合類別在

MySql是一款受歡迎的關聯式資料庫管理系統,廣泛應用於企業和個人的資料儲存和管理。除了儲存和查詢資料外,MySql還提供了一些功能,例如資料分析、資料探勘和統計,可以幫助使用者更好地理解和利用資料。數據在任何企業或組織中都是寶貴的資產,透過數據分析可以幫助企業做出正確的業務決策。 MySql可以透過多種方式進行資料分析和資料挖掘,以下是一些實用的技術和工具:使用

C#中常見的並發集合和執行緒安全問題在C#程式設計中,處理並發操作是非常常見的需求。當多個執行緒同時存取和修改相同資料時,就會出現線程安全性問題。為了解決這個問題,C#提供了一些並發集合和線程安全的機制。本文將介紹C#中常見的並發集合以及如何處理線程安全問題,並給出具體的程式碼範例。並發集合1.1ConcurrentDictionaryConcurrentDictio

Laravel集合中的Where方法實用指南在Laravel框架的開發過程中,集合(Collection)是一個非常有用的資料結構,它提供了豐富的方法來操作資料。其中,Where方法是常用的篩選方法,能夠根據指定條件來過濾集合中的元素。本文將介紹Laravel集合中Where方法的使用,透過具體的程式碼範例來示範其用法。 1.基本用法Where方法的
