【数据挖掘导论】数据类型
数据类型 数据集的不同表现在很多方面。例如:描述数据对象的属性可有具有不同的类型——定量的或者定性的。并且数据集可能还具有特定的性质,如包含时间序列或者彼此相关联。这因为如此,数据的类型决定我们应使用何种工具和技术来分析数据。此外,数据挖掘
数据类型数据集的不同表现在很多方面。例如:描述数据对象的属性可有具有不同的类型——定量的或者定性的。并且数据集可能还具有特定的性质,如包含时间序列或者彼此相关联。这因为如此,数据的类型决定我们应使用何种工具和技术来分析数据。此外,数据挖掘的研究也是为了适应新的应用领域和新的数据类型。
数据的质量 数据通常远非完美,尽管大部分的数据挖掘技术都容忍不完美的数据,但注重理解和提高数据质量将是改进精确分析结果的重要途径之一。
使数据适合挖掘的预处理步骤 通常,原始数据必须经过加工才能适合分析。而加工处理一方面是提高数据的质量,另一方面让数据更好的适应特定的数据挖掘技术或者工具。
根据数据联系分析数据 数据分析的一种方法是找出数据对象之间的联系,之后使用这些联系而不是数据对象本身进行其余的分析。
通常,数据集可以看作数据对象的集合。数据对象可以是:记录,点,向量,模式等。数据对象用一组刻画对象基本特性的属性描述,如:变量,字段,特征或者维。




属性的类型告诉我们,属性的那些性质反映在用于测量它的值中。知道属性的类型的重要性,因为它告诉我们测量值的那些性质与属性的基本性质一致,从而使我,恶魔得以避免计算雇员的平均ID这也愚蠢的行为,需要注意的是,通常将属性的类型称作测量标度的类型。
属性的不同类型 一种指定属性类型的有用方法是:确定对应属性基本性质的数值的性质。如:长度的属性可以有数值的许多性质,按长度比较对象,确定对象的排序,以及长度的差与比例都是有意义的。数值如下的操作通常用来描述属性:




属性的类型也可以用不改变属性意义的变换来描述,如:长度可用米或者英尺来度量。下表给出上表的四种属性类型的允许变换:


用值的个数描述属性 区分属性的一种独立的方法就是根据属性可能取值的个数来判断 离散的(discrete)离散属性具有有限个或无限个可数个值。通常离散属性应整数变量表示。二元属性(binary attribute)是离散属性的一种特殊情况,只接受两个值:真假,是否,01等。二元属性用布尔变量表示。
连续的(continuous)连续属性是取实数值的属性。如温度,高度等。通常,连续属性用浮点变量表示。
从理论上讲,任何测量标度类型(标称的,序数的,区间的,比率的)都可以与基于属性值个数的任意类型(二元的,离散的,连续的)组合。有些组合并不常出现,或者没有什么意义。
非对称属性 对于非对称属性(asymmetric attribute),出现非零属性值才是重要的。如:对于一个,每个对象都是学生的数据集。每个属性记录学生是否选修大学的某个课程。对于某个学生,选修某个属性的课程,值为1,否则为0。由于学生只能选所有可选的课程的一部分,因此这种数据集的大部分值为0,因此关注非零值将更有意义。只有非零值才重要的二元属性是非对称的二元属性。
数据集的类型 数据集的类型有很多,一般我们将数据集分为三组:记录数据,基于图形的数据和有序数据。
数据集的一般特性 维度(dimensionality)数据集的维度是数据集中的对象具有的属性数目,分为底,中,高维度。在分析数据的时候,最好将数据的维度降低。因为在分析高维度数据的时候,会陷入所谓的维灾难(curse of dimensionality)。因此,数据预处理的一个重要的动机就是减少维度,称为维归约(dimensionality reduction)
稀疏性(sparsity)有些数据集,如具有非对称特征的数据集,一个对象的大部分属性上的值都是0,在许多情况下,非零项还不到1%。事实上,稀疏性是一个优点,因为只有非零值才需要存储和处理。这将大大节省计算时间和存储空间。
分辨率(resolution)常常可以在不同的分辨率下得到数据,且在不同的分辨率下数据的性质也不同。如:在几米的分辨率下,地表看起来很不平坦,但在数十公里的分辨率下却相对平坦。
记录数据 许多数据挖掘任务都是假定数据集是记录(数据对象)的汇集,每个记录包含固定的数据字段(属性)集。下面介绍不同类型的记录数据:


事务数据或购物篮数据 事务数据(transaction data)是一种特殊类型的记录数据,其中每个记录(数据)涉及一系列的项。考虑顾客一次购物所买的商品集合构成一个事务,而所有购买的商品作为项。这种类型的数据称作购物篮数据(market basket data)。
数据矩阵 如果一个数据集族中所有数据对象都具有相同的数值属性集,则数据对象可以看作多维空间的点(向量),其中每个维代表对象的一个不同属性。这样的数据对象集可以用一个m*n的矩阵表示,其中m行,一个对象一行;n列,一个属性一列。这种矩阵称作数据矩阵(data matrix)或模式矩阵(pattern matrix)。
稀疏数据矩阵 稀疏数据矩阵是数据矩阵的一种特殊的情况,其中属性的类型相同并且是非对称的,即只有非零值才是重要的。事务数据是仅含0-1元素的稀疏数据矩阵的例子。另一个常见的便是文档数据。文档集合的表示通常称作文档-词矩阵(document-term matrix),如图2-2d,文档是该矩阵的行,词是该矩阵的列。
基于图形的数据 有时图形可以有效的表示数据,但有两种特殊的情况:图形捕获数据对象之间的联系;数据对象本身用图形表示。
担忧对象之间联系的数据 对象之间的联系常常携带重要的信息。这种情况下,数据常常用图形表示。一般把数据对象映射到图的结点,而对象之间的联系用对象之间的链或方向,权值等表示。如相互链接的网页。
具有图形对象的数据 如果对象具有结构,即对象包含具有联系的子对象,则这样的对象常常用图形表示。如化学物的结构用图形表示。
有序数据 对于某些数据类型,属性涉及到时间或空间序的联系。如下:


时序数据 时序数据(sequential data)也称时间数据(temporal data),可以看作记录数据的扩充,其中每一个记录包含一个与之相关联的时间。时间也可以与每个属性相关,如:每个记录可以是一位顾客的购物历史,包含不同时间购买的商品列表。使用这些信息,我们也许可能发现:买了iPhone的人是不会在关注那些低端的android机的。
序列数据 序列数据(sequence data)是一个数据集合,它是各个实体的序列,如:词或字母的序列,基因组序列等
时间序列数据 时间序列数据(time series data)是一种特殊的时序数据,其中每个记录都是一个时间序列(time series),即一段时间以来的测量序列。如图2-4c,记录的是一个地方1982年到1994年月平均的时间序列。需要注意的是:在分析时间数据时,需要考虑时间自相关(temporal autocorrelation),即如果两个测量的时间很近,则这些测量的值通常非常的相似。
空间数据 某些数据也许还会拥有空间属性,如位置或区域。空间数据的例子有很多,比如:从不同地方收集气象数据。空间数据的一个重要的特点就是空间自相关性(spatial autocorrelation),即物理上靠近的对象趋向于其他方面也相似。
处理非记录数据 大部分数据挖掘算法都是为记录数据或其变体(事务数据,数据矩阵)设计的。通过对象中提取特征,并使用这些特征创建对应与每个对象的记录,针对记录数据的技术也可以用与非记录数据。如化学结构的数据,给定一个常见的子结构集合,每个化合物都可以用一个具有二元属性的记录表示,这些二元属性指出化合物是否包含特定的子结构,这也的表示实际上是事务数据集,其中事务是化合物,而项是子结构。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

這週,由OpenAI、微軟、貝佐斯和英偉達投資的機器人公司FigureAI宣布獲得接近7億美元的融資,計劃在未來一年內研發出可獨立行走的人形機器人。而特斯拉的擎天柱也屢屢傳出好消息。沒人懷疑,今年會是人形機器人爆發的一年。一家位於加拿大的機器人公司SanctuaryAI最近發布了一款全新的人形機器人Phoenix。官方號稱它能以和人類一樣的速率自主完成許多工作。世界上第一台能以人類速度自主完成任務的機器人Pheonix可以輕輕地抓取、移動並優雅地將每個物件放置在它的左右兩側。它能夠自主辨識物體的
