首頁 資料庫 mysql教程 【数据挖掘导论】数据类型

【数据挖掘导论】数据类型

Jun 07, 2016 pm 03:59 PM
不同 數據 資料探勘 現在 類型

数据类型 数据集的不同表现在很多方面。例如:描述数据对象的属性可有具有不同的类型——定量的或者定性的。并且数据集可能还具有特定的性质,如包含时间序列或者彼此相关联。这因为如此,数据的类型决定我们应使用何种工具和技术来分析数据。此外,数据挖掘

数据类型
数据集的不同表现在很多方面。例如:描述数据对象的属性可有具有不同的类型——定量的或者定性的。并且数据集可能还具有特定的性质,如包含时间序列或者彼此相关联。这因为如此,数据的类型决定我们应使用何种工具和技术来分析数据。此外,数据挖掘的研究也是为了适应新的应用领域和新的数据类型。
数据的质量 数据通常远非完美,尽管大部分的数据挖掘技术都容忍不完美的数据,但注重理解和提高数据质量将是改进精确分析结果的重要途径之一。
使数据适合挖掘的预处理步骤 通常,原始数据必须经过加工才能适合分析。而加工处理一方面是提高数据的质量,另一方面让数据更好的适应特定的数据挖掘技术或者工具。
根据数据联系分析数据 数据分析的一种方法是找出数据对象之间的联系,之后使用这些联系而不是数据对象本身进行其余的分析。
通常,数据集可以看作数据对象的集合。数据对象可以是:记录,点,向量,模式等。数据对象用一组刻画对象基本特性的属性描述,如:变量,字段,特征或者维。 \
\ \ 属性与度量喎?http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vc3Ryb25nPgo8c3Ryb25nPsqyw7TKx8r00NSjujwvc3Ryb25nPgo8c3Ryb25nPsr00NSjqGF0dHJpYnV0ZaOpPC9zdHJvbmc+yse21M/ztcTQ1NbKu/LV38zY0NSjrMv80vK21M/ztvjS7Lvyy+bXxcqxvOSx5Luvtvix5LuvoaPXt7j5y93UtKOsyvTQ1LKit8fK/dfWu/K3+7rFoaPIu7b4zqrBy8zWwtu6zbfWzva21M/ztcTM2NDUo6zO0sPHuLPT6MHLy/zDx8r919a6zbf7usWho86qwcvTw9K71tbD98i3tqjS5bXEt73Kvdf2tb3V4rXjo6zO0sPH0OjSqrLiwb+x6rbIoaMKPGJyPgoKPHN0cm9uZz6y4sG/seq2yKOobXJlYXN1cmVtZW50IHNjYWxlo6k8L3N0cm9uZz7Kx72ryv0mIzIwNTQwO7vyt/u6xSYjMjA1NDA70+u21M/ztcTK9NDUz+C52MGqtcS55tTyo6i6r8r9o6mho9DOyr3Jz6OssuLBv7n9s8zKx8q508Oy4sG/seq2yL2r0ru49iYjMjA1NDA70+vSu7j2zNi2qLbUz/O1xMzYtqjK9NDUz+C52MGqoaPL5Mi7y7W1xNPQ0Kmz6c/zoaO1q9Tayfq77tbQo6zO0sPHzt7Ksc7ev8y1xL340NCy4sG/uf2zzKOsyOejusnPuau9u7O1o6y74b+009DDu9PQyqPT4LXE1/nOu8Tc1/i1yKGj1eLQqcfpv/bPwqOstrzKx7bUz/PK9NDUtcTO78DtJiMyMDU0MDuxu9OzyeS1vcr9JiMyMDU0MDu78rf7usUmIzIwNTQwO6GjCjxicj4KCjxzdHJvbmc+yvTQ1LXEwODQzTwvc3Ryb25nPgq008eww+a1w9aqo6zK9NDUtcTQ1NbKsrux2NPr08PAtLbIwb/L/LXEJiMyMDU0MDu1xNDU1srP4M2soaO8tKOs08PAtLT6se3K9NDUtcQmIzIwNTQwO7/JxNy+39PQsrvNrNPryvTQ1LG+ye21xNDU1sqjrLe01q7S4Mi7oaMKPGltZyBzcmM9"http://www.2cto.com/uploadfile/2014/0724/20140724013644436.png" alt="\"> \

属性的类型告诉我们,属性的那些性质反映在用于测量它的值中。知道属性的类型的重要性,因为它告诉我们测量值的那些性质与属性的基本性质一致,从而使我,恶魔得以避免计算雇员的平均ID这也愚蠢的行为,需要注意的是,通常将属性的类型称作测量标度的类型。

属性的不同类型 一种指定属性类型的有用方法是:确定对应属性基本性质的数值的性质。如:长度的属性可以有数值的许多性质,按长度比较对象,确定对象的排序,以及长度的差与比例都是有意义的。数值如下的操作通常用来描述属性: \
\ 给定这些性质,我们可以定义出四种属性类型:标称(nominal),序数(ordinal),区间(interval),比率(ratio)。 \ \
属性的类型也可以用不改变属性意义的变换来描述,如:长度可用米或者英尺来度量。下表给出上表的四种属性类型的允许变换: \ \
用值的个数描述属性 区分属性的一种独立的方法就是根据属性可能取值的个数来判断 离散的(discrete)离散属性具有有限个或无限个可数个值。通常离散属性应整数变量表示。二元属性(binary attribute)是离散属性的一种特殊情况,只接受两个值:真假,是否,01等。二元属性用布尔变量表示。
连续的(continuous)连续属性是取实数值的属性。如温度,高度等。通常,连续属性用浮点变量表示。
从理论上讲,任何测量标度类型(标称的,序数的,区间的,比率的)都可以与基于属性值个数的任意类型(二元的,离散的,连续的)组合。有些组合并不常出现,或者没有什么意义。
非对称属性 对于非对称属性(asymmetric attribute),出现非零属性值才是重要的。如:对于一个,每个对象都是学生的数据集。每个属性记录学生是否选修大学的某个课程。对于某个学生,选修某个属性的课程,值为1,否则为0。由于学生只能选所有可选的课程的一部分,因此这种数据集的大部分值为0,因此关注非零值将更有意义。只有非零值才重要的二元属性是非对称的二元属性。

数据集的类型 数据集的类型有很多,一般我们将数据集分为三组:记录数据,基于图形的数据和有序数据。
数据集的一般特性 维度(dimensionality)数据集的维度是数据集中的对象具有的属性数目,分为底,中,高维度。在分析数据的时候,最好将数据的维度降低。因为在分析高维度数据的时候,会陷入所谓的维灾难(curse of dimensionality)。因此,数据预处理的一个重要的动机就是减少维度,称为维归约(dimensionality reduction)
稀疏性(sparsity)有些数据集,如具有非对称特征的数据集,一个对象的大部分属性上的值都是0,在许多情况下,非零项还不到1%。事实上,稀疏性是一个优点,因为只有非零值才需要存储和处理。这将大大节省计算时间和存储空间。
分辨率(resolution)常常可以在不同的分辨率下得到数据,且在不同的分辨率下数据的性质也不同。如:在几米的分辨率下,地表看起来很不平坦,但在数十公里的分辨率下却相对平坦。

记录数据 许多数据挖掘任务都是假定数据集是记录(数据对象)的汇集,每个记录包含固定的数据字段(属性)集。下面介绍不同类型的记录数据: \ \
事务数据或购物篮数据 事务数据(transaction data)是一种特殊类型的记录数据,其中每个记录(数据)涉及一系列的项。考虑顾客一次购物所买的商品集合构成一个事务,而所有购买的商品作为项。这种类型的数据称作购物篮数据(market basket data)。
数据矩阵 如果一个数据集族中所有数据对象都具有相同的数值属性集,则数据对象可以看作多维空间的点(向量),其中每个维代表对象的一个不同属性。这样的数据对象集可以用一个m*n的矩阵表示,其中m行,一个对象一行;n列,一个属性一列。这种矩阵称作数据矩阵(data matrix)模式矩阵(pattern matrix)。
稀疏数据矩阵 稀疏数据矩阵是数据矩阵的一种特殊的情况,其中属性的类型相同并且是非对称的,即只有非零值才是重要的。事务数据是仅含0-1元素的稀疏数据矩阵的例子。另一个常见的便是文档数据。文档集合的表示通常称作文档-词矩阵(document-term matrix),如图2-2d,文档是该矩阵的行,词是该矩阵的列。

基于图形的数据 有时图形可以有效的表示数据,但有两种特殊的情况:图形捕获数据对象之间的联系;数据对象本身用图形表示。
担忧对象之间联系的数据 对象之间的联系常常携带重要的信息。这种情况下,数据常常用图形表示。一般把数据对象映射到图的结点,而对象之间的联系用对象之间的链或方向,权值等表示。如相互链接的网页。
具有图形对象的数据 如果对象具有结构,即对象包含具有联系的子对象,则这样的对象常常用图形表示。如化学物的结构用图形表示。

有序数据 对于某些数据类型,属性涉及到时间或空间序的联系。如下: \
时序数据 时序数据(sequential data)也称时间数据(temporal data),可以看作记录数据的扩充,其中每一个记录包含一个与之相关联的时间。时间也可以与每个属性相关,如:每个记录可以是一位顾客的购物历史,包含不同时间购买的商品列表。使用这些信息,我们也许可能发现:买了iPhone的人是不会在关注那些低端的android机的。
序列数据 序列数据(sequence data)是一个数据集合,它是各个实体的序列,如:词或字母的序列,基因组序列等
时间序列数据 时间序列数据(time series data)是一种特殊的时序数据,其中每个记录都是一个时间序列(time series),即一段时间以来的测量序列。如图2-4c,记录的是一个地方1982年到1994年月平均的时间序列。需要注意的是:在分析时间数据时,需要考虑时间自相关(temporal autocorrelation),即如果两个测量的时间很近,则这些测量的值通常非常的相似。
空间数据 某些数据也许还会拥有空间属性,如位置或区域。空间数据的例子有很多,比如:从不同地方收集气象数据。空间数据的一个重要的特点就是空间自相关性(spatial autocorrelation),即物理上靠近的对象趋向于其他方面也相似。

处理非记录数据 大部分数据挖掘算法都是为记录数据或其变体(事务数据,数据矩阵)设计的。通过对象中提取特征,并使用这些特征创建对应与每个对象的记录,针对记录数据的技术也可以用与非记录数据。如化学结构的数据,给定一个常见的子结构集合,每个化合物都可以用一个具有二元属性的记录表示,这些二元属性指出化合物是否包含特定的子结构,这也的表示实际上是事务数据集,其中事务是化合物,而项是子结构。
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

使用ddrescue在Linux上恢復數據 使用ddrescue在Linux上恢復數據 Mar 20, 2024 pm 01:37 PM

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

阿里7B多模態文件理解大模型拿下新SOTA 阿里7B多模態文件理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

首個自主完成人類任務機器人出現,五指靈活速度超人,大模型加持虛擬空間訓練 首個自主完成人類任務機器人出現,五指靈活速度超人,大模型加持虛擬空間訓練 Mar 11, 2024 pm 12:10 PM

這週,由OpenAI、微軟、貝佐斯和英偉達投資的機器人公司FigureAI宣布獲得接近7億美元的融資,計劃在未來一年內研發出可獨立行走的人形機器人。而特斯拉的擎天柱也屢屢傳出好消息。沒人懷疑,今年會是人形機器人爆發的一年。一家位於加拿大的機器人公司SanctuaryAI最近發布了一款全新的人形機器人Phoenix。官方號稱它能以和人類一樣的速率自主完成許多工作。世界上第一台能以人類速度自主完成任務的機器人Pheonix可以輕輕地抓取、移動並優雅地將每個物件放置在它的左右兩側。它能夠自主辨識物體的

See all articles