首頁 資料庫 mysql教程 Python(Stackless) + MongoDB Apache 日志(2G)分析

Python(Stackless) + MongoDB Apache 日志(2G)分析

Jun 07, 2016 pm 04:26 PM
mongodb python

为何选择Stackless? http://www.stackless.com Stackless可以简单的认为是Python一个增强版,最吸引眼球的非“微线程”莫属。微线程是轻量级的线程,与线程相比切换消耗的资源更小,线程内共享数据更加便捷。相比多线程代码更加简洁和可读。此项目是由EVE O

为何选择Stackless? http://www.stackless.com

Stackless可以简单的认为是Python一个增强版,最吸引眼球的非“微线程”莫属。微线程是轻量级的线程,与线程相比切换消耗的资源更小,线程内共享数据更加便捷。相比多线程代码更加简洁和可读。此项目是由EVE Online推出,在并发和性能上确实很强劲。安装和Python一样,可以考虑替换原系统Python。:)

为何选择MongoDB? http://www.mongodb.org

可以在官网看到很多流行的应用采用MongoDB,比如sourceforge,github等。相比RDBMS有啥优势?首先在速度和性能上优势最为明显,不仅可以当作类似KeyValue数据库来使,还包含了一些数据库查询(Distinct、Group、随机、索引等特性)。再有一点特性就是:简单。不论是应用还是文档,还是第三方API,几乎略过一下就可以使用。不过有点遗憾的就是,存储的数据文件很大,超过正常数据的2-4倍之间。本文测试的Apache日志大小是2G,生产的数据文件有6G。寒...希望在新版里能有所缩身,当然这个也是明显的以空间换速度的后果。

本文除去上面提及到的两个软件,还需要安装pymongo模块。http://api.mongodb.org/python/

模块安装方式有源码编译和easy_install,这里就不再累赘。

  1. 从Apache日志中分析出需要保存的资料,比如IP,时间,GET/POST,返回状态码等。

fmt_str  = '(?P[.\d]+) - - \[(?P.*?)\] "(?P.*?) (?P.*?) HTTP/1.\d" (?P\d+) (?P.*?) "(?P.*?)" "(?P.*?)"'
fmt_name = re.findall('\?P', fmt_str)
fmt_re   = re.compile(fmt_str)
登入後複製

定义了一个正则用于提取每行日志的内容。fmt_name就是提取尖括号中间的变量名。

  1. 定义MongoDB相关变量,包括需要存到collection名称。Connection采取的是默认Host和端口。

conn     = Connection()
apache   = conn.apache
logs     = apache.logs
登入後複製
  1. 保存日志行

def make_line(line):
    m = fmt_re.search(line)
    if m:
        logs.insert(dict(zip(fmt_name, m.groups())))
登入後複製
  1. 读取Apache日志文件

def make_log(log_path):
    with open(log_path) as fp:
        for line in fp:
            make_line(line.strip())
登入後複製
  1. 运行把。

if __name__ == '__main__':
    make_log('d:/apachelog.txt')
登入後複製

脚本大致情况如此,这里没有放上stackless部分代码,可以参考下面代码:

import stackless
def print_x(x):
    print x
stackless.tasklet(print_x)('one')
stackless.tasklet(print_x)('two')
stackless.run()
登入後複製

tasklet操作只是把类似操作放入队列中,run才是真正的运行。这里主要用于替换原有多线程threading并行分析多个日志的行为。

补充:

Apache日志大小是2G,671万行左右。生成的数据库有6G。

硬件:Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz 台式机

系统:RHEL 5.2 文件系统ext3

其他:Stackless 2.6.4 MongoDB 1.2

在保存300万左右时候,一切正常。不管是CPU还是内存,以及插入速度都很不错,大概有8-9000条/秒。和以前笔记本上测试结果基本一致。再往以后,内存消耗有点飙升,插入速度也降低。500万左右记录时候CPU达到40%,内存消耗2.1G。在生成第二个2G数据文件时候似乎速度和效率又提升上去了。最终保存的结果不是太满意。

后加用笔记本重新测试了一下1000万数据,速度比上面的671万明显提升很多。初步怀疑有两个地方可能会影响性能和速度:

  1. 文件系统的差异。笔记本是Ubuntu 9.10,ext4系统。搜了下ext3和ext4在大文件读写上会有所差距。

  2. 正则匹配上。单行操作都是匹配提取。大文件上应该还有优化的空间。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

使用 Composer 解決推薦系統的困境:andres-montanez/recommendations-bundle 的實踐 使用 Composer 解決推薦系統的困境:andres-montanez/recommendations-bundle 的實踐 Apr 18, 2025 am 11:48 AM

在開發一個電商網站時,我遇到了一個棘手的問題:如何為用戶提供個性化的商品推薦。最初,我嘗試了一些簡單的推薦算法,但效果並不理想,用戶的滿意度也因此受到影響。為了提升推薦系統的精度和效率,我決定採用更專業的解決方案。最終,我通過Composer安裝了andres-montanez/recommendations-bundle,這不僅解決了我的問題,還大大提升了推薦系統的性能。可以通過一下地址學習composer:學習地址

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

See all articles