首頁 資料庫 mysql教程 MongoDB 2.4 Released

MongoDB 2.4 Released

Jun 07, 2016 pm 04:29 PM
mongo mongodb the

The MongoDB Engineering Team is pleased to announce the release of MongoDB 2.4. This is the latest stable release, following the September 2012 release of MongoDB 2.2. This release contains key new features along with performance improveme

The MongoDB Engineering Team is pleased to announce the release of MongoDB 2.4. This is the latest stable release, following the September 2012 release of MongoDB 2.2. This release contains key new features along with performance improvements and bug fixes. We have outlined some of the key features below. For additional details about the release:

  • 2.4 release notes
  • MongoDB Downloads
  • MongoDB 2.4 webinars

Highlights of MongoDB 2.4 include:

  • Hash-based Sharding
  • Capped Arrays
  • Text Search (Beta)
  • Geospatial Enhancements
  • Faster Counts
  • Working Set Analyzer
  • V8 JavaScript engine
  • Security

Hash-based Sharding: MongoDB 2.4 adds Hash-based Sharding, built on top of our range based sharding. Using a hashed shard key allows users to get a good distribution of load and data in a simple manner, in cases where documents are accessed randomly through the key space, or if the access patterns may not be totally predictable.

Capped Arrays: Capped arrays declare a fixed size array inside of a document. On a $push operation, users can now specify a $slice modifier, which trims the array to the last N items. You can also specify a sort, which will first sort the array, and then apply the trim.

Text Search: Text Search has been one of the all time most requested features in MongoDB. Text indexing will offer native, real-time text search with stemming and tokenization in 15 languages. For more details on Text Search and its implementation see the docs and blog post.

Geo Capabilities: MongoDB 2.4 introduces GeoJSON support, a more accurate spherical model and enhanced search including polygon intersection. ?Currently 2dsphere supports the Point, LineString and Polygon GeoJSON shapes. ?

Faster Counts: In many cases, counts in MongoDB 2.4 are an order of magnitude faster than previous versions. We made numerous optimizations to the query execution engine in order to improve common access patterns. One example is in a single b-tree bucket: if the first and last entry in the bucket match a count range, we know the middle keys do as well, thus we do not have to check them individually.

Working Set Analyzer: Capacity planning is critical to running a MongoDB cluster. In MongoDB 2.4 we added a working set size analyzer, making it easy to measure the percentage of resources used. It will tell you how many unique pages the server has needed in the last 15 minutes, so that you can track usage over time. When the amount of data needed in 15 minutes is approaching RAM, its probably time to add more capacity to your cluster.

New V8 Engine: MongoDB 2.4 changed the JavaScript engine used for MapReduce, $where and the shell. We have switched to V8, the JavaScript engine from Google Chrome, which improves concurrency.

Security: MongoDB 2.4 two major security enhancements: Kerberos Authentication and Role Based Access Control. Kerberos is part of MongoDB Enterprise and allows integration with enterprise level user management systems. Role Based Access Control allows more fine grained privilege management. ?

There were hundreds (692) of improvements, so we encourage those interested to look at the changelog. A great deal of important work was done that cannot all be put into one post, so please ask questions about other tickets. ?Even with everything in MongoDB 2.4, there is still a lot to do, and the 10gen engineering team is already hard at work on MongoDB 2.6.

  • Downloads
  • Release Notes
  • Full changelog
  • For the full scoop on new features in MongoDB version 2.4, register for our webinar series on new features Text Search, Geo, Kerberos

We encourage you to provide feedback and testing. Thank you for your ongoing support of MongoDB.

-Eliot and the MongoDB Engineering Team

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

net4.0有什麼用 net4.0有什麼用 May 10, 2024 am 01:09 AM

.NET 4.0 用於創建各種應用程序,它為應用程式開發人員提供了豐富的功能,包括:物件導向程式設計、靈活性、強大的架構、雲端運算整合、效能最佳化、廣泛的程式庫、安全性、可擴展性、資料存取和行動開發支援。

如何在Debian上配置MongoDB自動擴容 如何在Debian上配置MongoDB自動擴容 Apr 02, 2025 am 07:36 AM

本文介紹如何在Debian系統上配置MongoDB實現自動擴容,主要步驟包括MongoDB副本集的設置和磁盤空間監控。一、MongoDB安裝首先,確保已在Debian系統上安裝MongoDB。使用以下命令安裝:sudoaptupdatesudoaptinstall-ymongodb-org二、配置MongoDB副本集MongoDB副本集確保高可用性和數據冗餘,是實現自動擴容的基礎。啟動MongoDB服務:sudosystemctlstartmongodsudosys

使用 Composer 解決推薦系統的困境:andres-montanez/recommendations-bundle 的實踐 使用 Composer 解決推薦系統的困境:andres-montanez/recommendations-bundle 的實踐 Apr 18, 2025 am 11:48 AM

在開發一個電商網站時,我遇到了一個棘手的問題:如何為用戶提供個性化的商品推薦。最初,我嘗試了一些簡單的推薦算法,但效果並不理想,用戶的滿意度也因此受到影響。為了提升推薦系統的精度和效率,我決定採用更專業的解決方案。最終,我通過Composer安裝了andres-montanez/recommendations-bundle,這不僅解決了我的問題,還大大提升了推薦系統的性能。可以通過一下地址學習composer:學習地址

MongoDB在Debian上的高可用性如何保障 MongoDB在Debian上的高可用性如何保障 Apr 02, 2025 am 07:21 AM

本文介紹如何在Debian系統上構建高可用性的MongoDB數據庫。我們將探討多種方法,確保數據安全和服務持續運行。關鍵策略:副本集(ReplicaSet):利用副本集實現數據冗餘和自動故障轉移。當主節點出現故障時,副本集會自動選舉新的主節點,保證服務的持續可用性。數據備份與恢復:定期使用mongodump命令進行數據庫備份,並製定有效的恢復策略,以應對數據丟失風險。監控與報警:部署監控工具(如Prometheus、Grafana)實時監控MongoDB的運行狀態,並

Navicat查看MongoDB數據庫密碼的方法 Navicat查看MongoDB數據庫密碼的方法 Apr 08, 2025 pm 09:39 PM

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

CentOS MongoDB備份策略是什麼 CentOS MongoDB備份策略是什麼 Apr 14, 2025 pm 04:51 PM

CentOS系統下MongoDB高效備份策略詳解本文將詳細介紹在CentOS系統上實施MongoDB備份的多種策略,以確保數據安全和業務連續性。我們將涵蓋手動備份、定時備份、自動化腳本備份以及Docker容器環境下的備份方法,並提供備份文件管理的最佳實踐。手動備份:利用mongodump命令進行手動全量備份,例如:mongodump-hlocalhost:27017-u用戶名-p密碼-d數據庫名稱-o/備份目錄此命令會將指定數據庫的數據及元數據導出到指定的備份目錄。

CentOS上GitLab的數據庫如何選擇 CentOS上GitLab的數據庫如何選擇 Apr 14, 2025 pm 04:48 PM

CentOS系統上GitLab數據庫部署指南選擇合適的數據庫是成功部署GitLab的關鍵步驟。 GitLab兼容多種數據庫,包括MySQL、PostgreSQL和MongoDB。本文將詳細介紹如何選擇並配置這些數據庫。數據庫選擇建議MySQL:一款廣泛應用的關係型數據庫管理系統(RDBMS),性能穩定,適用於大多數GitLab部署場景。 PostgreSQL:功能強大的開源RDBMS,支持複雜查詢和高級特性,適合處理大型數據集。 MongoDB:流行的NoSQL數據庫,擅長處理海

MongoDB 與關係數據庫:全面比較 MongoDB 與關係數據庫:全面比較 Apr 08, 2025 pm 06:30 PM

MongoDB與關係型數據庫:深度對比本文將深入探討NoSQL數據庫MongoDB與傳統關係型數據庫(如MySQL和SQLServer)的差異。關係型數據庫採用行和列的表格結構組織數據,而MongoDB則使用靈活的面向文檔模型,更適應現代應用的需求。主要區別數據結構:關係型數據庫使用預定義模式的表格存儲數據,表間關係通過主鍵和外鍵建立;MongoDB使用類似JSON的BSON文檔存儲在集合中,每個文檔結構可獨立變化,實現無模式設計。架構設計:關係型數據庫需要預先定義固定的模式;MongoDB支持

See all articles