深入解析MapReduce架构设计与实现原理–读书笔记(4)MR及Partitio
MR解析 Mapper/Reducer封装了应用程序的数据处理逻辑。 所有存储在底层分布式文件系统上的数据均要解释成key/value的形式。并交给MR中的map/reduce函数处理,产生另外一些key/value。 Mapper 1)初始化 Mapper继承了JobConfigurable接口。该config方法允许通
MR解析
Mapper/Reducer封装了应用程序的数据处理逻辑。
所有存储在底层分布式文件系统上的数据均要解释成key/value的形式。并交给MR中的map/reduce函数处理,产生另外一些key/value。
Mapper
1)初始化
Mapper继承了JobConfigurable接口。该config方法允许通过JobConf参数对Mapper进行初始化。
2)Map操作
MapReduce会通过InputFormat中RecordReader从InputSplit获取一个key/value对,并交给map()函数处理:
void map(K1 key,V2 value,OutputCollector
3)清理
Mapper通过继承Colseable获得close方法,用户可通过实现该方法对Mapper进行清理。
Mapper类型
ChainMapper 链式作业;IdentityMapper对于输入不进行任何处理,直接输出;InvertMapper 交换key/value位置;
RegexMapper 正则表达式字符串分割;TokenMapper 将字符串分割成若干个token,可用作wordCount的Mapper;
LongSumReducer:以key为组,对long类型的value求累加和。
新的Mapper由接口变为抽象类;不再继承JobConfigurable和Closeable,而是直接在类中添加了setup和cleanup两个方法进行初始化和清理工作。
将参数封装到Context对象中,接口具有良好扩展性。
去掉MapRunnable接口,在Mapper中添加run方法,以方便用户定制map()函数的调用方法。
新API中,Reducer遍历value的迭代器类型变为Iterable
void reduce(KEYIN key,Iteratable values,Context context) throws IOException,InterrupteException{for(VALUEIN value:values){ context.write((KEYOUT) key,(VALUEOUT) value);}}
Partitioner接口的设计与实现
Partitioner的作用是对Mapper产生的中间结果进行分片,以便将同一分组的数据交给同一个Reducer处理,它直接影响Reduce阶段的负载均衡。
只包含一个待实现的方法getPartition。该方法包含3个参数,均由框架自传入,前面2个参数是key/value,第三个参数numPartitions表示每个Mapper的分片数,
也就是Reducer的个数。
HashPartitioner和TotalOrderPartitioner。其中HashPartitioner是默认实现:public int getPartition(K2 key,V2 value,int numReduceTasks){return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks ;}
TotalOrderPartitioner提供了一种基于区间的分片方法,通常用在数据全排序中,归并排序。
在Map阶段,每个MapTask进行局部排序;在Reduce阶段,启动一个ReduceTask进行全局排序。由于作业只能有一个ReduceTask,因此会产生瓶颈。
TotalOrderPartitioner按照大小将数据分成若干个区间,并保证后一个区间的所有数据均大于前一个区间数据。
步骤1:数据采样。
在client端通过采样获取分片的分割点。
采样数据:b,abc,abd,bcd,abcd,efg,hii,afd,rrr,mnk
排序后:abc,abcd,abd,afd,b,bcd,efg,hii,mnk,rrr
如果有4个Reduce Task,则采样数据的四等分点为abd,bcd,mnk
步骤2:Map阶段。
Mapper可采用IdentityMapper直接将输入数据输出,TotalOrderPartitioner将步骤1中获取的分割点保存到trie树中以便快速定位任意一个记录所在的区间,这样每个
Map Task产生R个区间,且区间中间有序。
步骤3:Reduce阶段。
每个Reducer对分配到的区间数据进行局部排序,最终得到全排序数据。
TotalOrderPartitioner有2个典型应用实例;TeraSort和HBase。
HBase内部数据有序,Region之间也有序。
原文地址:深入解析MapReduce架构设计与实现原理–读书笔记(4)MR及Partitioner, 感谢原作者分享。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

華為手機如何實現雙微信登入?隨著社群媒體的興起,微信已成為人們日常生活中不可或缺的溝通工具之一。然而,許多人可能會遇到一個問題:在同一部手機上同時登入多個微信帳號。對於華為手機用戶來說,實現雙微信登入並不困難,本文將介紹華為手機如何實現雙微信登入的方法。首先,華為手機自帶的EMUI系統提供了一個很方便的功能-應用程式雙開。透過應用程式雙開功能,用戶可以在手機上同

4月26日消息,中興5G隨身Wi-FiU50S目前已經正式開賣,首發899元。外觀設計上,中興U50S隨身Wi-Fi簡約時尚,易於手持和包裝。其尺寸為159/73/18mm,攜帶方便,讓您隨時隨地暢享5G高速網絡,實現暢行無阻的行動辦公與娛樂體驗。中興5G隨身Wi-FiU50S該設備支援先進的Wi-Fi6協議,峰值速率高達1800Mbps,依托驍龍X55高效能5G平台,為用戶提供極速的網路體驗。不僅支援5G雙模SA+NSA網路環境與Sub-6GHz頻段,實測網速更可達驚人的500Mbps,輕鬆滿

4月17日消息,HMD攜手知名啤酒品牌喜力以及創意公司Bodega,聯袂推出了一款獨特的翻蓋手機-無聊手機(TheBoringPhone)。這款手機不僅在設計上充滿新意,更在功能上返璞歸真,旨在引領人們回歸真實的人際交往,享受與朋友暢飲的純粹時光。無聊手機採用了獨特的透明翻蓋設計,展現出簡約而不失優雅的美感。其內部配備了2.8英寸QVGA顯示屏,外部則是一塊1.77英寸的顯示屏,為用戶提供了基本的視覺交互體驗。在攝影方面,雖然僅搭載了30萬畫素的鏡頭,但足以應付日常的簡

nohup的作用及原理解析在Unix和類Unix作業系統中,nohup是一個常用的命令,用於在後台運行命令,即便用戶退出當前會話或關閉終端窗口,命令仍然能夠繼續執行。在本文中,我們將詳細解析nohup指令的作用和原理。一、nohup的作用後台運行命令:透過nohup命令,我們可以讓需要長時間運行的命令在後台持續執行,而不受用戶退出終端會話的影響。這在需要運行

SpringDataJPA基於JPA架構,透過映射、ORM和事務管理與資料庫互動。其儲存庫提供CRUD操作,派生查詢簡化了資料庫存取。此外,它使用延遲加載,僅在必要時檢索數據,從而提高了效能。

4月3日消息,台電即將推出的M50Mini平板電腦是一款功能豐富、效能強大的裝置。這款8吋小平板新品搭載了8.7吋的IPS螢幕,為用戶提供了出色的視覺體驗。其金屬機身設計不僅美觀,也增強了設備的耐用性。在性能方面,M50Mini搭載了紫光展銳T606八核心處理器,擁有兩個A75核心和六個A55核心,確保了流暢且高效的運作體驗。同時,該平板還配備了6GB+128GB的儲存方案,並支援8GB記憶體擴展,滿足了用戶對於儲存和多任務處理的需求。在續航上,M50Mini配備了5000mAh的電池,支援Ty

5月13日消息,vivoX100s今晚正式發布,除了出色的影像,新機在訊號方面表現也十分強悍。根據vivo官方介紹,vivoX100s採用了創新的寰宇訊號放大系統,該系統配備了高達21根天線。這項設計基於直屏進行了重新優化,以平衡5G、4G、Wi-Fi、GPS以及NFC等眾多訊號需求。這使得vivoX100s成為了vivo有史以來訊號接收能力最強的手機。新款手機還採用了獨特的360°環繞設計,天線分佈在機身周圍。這項設計不僅增強了訊號的強度,還針對日常各種握持姿勢進行了優化,避免了因握持方式不當導

7月12日消息,榮耀MagicV3系列今日正式發布,搭載全新榮耀視力舒緩綠洲護眼屏,在屏幕本身俱備高規格和高素質的同時,還開創性的引入AI主動式護眼技術。據悉,傳統的緩解近視的方式是“近視鏡”,近視眼鏡度數均勻分佈,保證了視線中心區域成像在視網膜之上,但周邊區域成像在視網膜後,視網膜感應到成像在後,促進眼軸向後生長,從而使度數加深。目前主要的緩解近視發展的方式之一是“離焦鏡”,其中心區域度數正常,週邊區域透過光學設計分區調整,從而使周邊區域成像落在視網膜前,
