基于12c in-memory新特性的SQL优化比拼
在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!
在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!
该次SQL优化比拼的?原帖地址http://t.cn/RzURLTJ
OKAY 我们来优化一下, 既然索引,物化视图等传统技术无法使用,我们只能使用使用一些oracle的大数据处理技术来提高性能 首先创建表 scripts 可以查看 xxxxxxxx 这里提一下, 在创建表的时候使用pctfree 0 来适当的降低了逻辑读。 创建完毕 COUNT(*)||'TIME_ROWS' 58432 time_rows 29402976 sales_rows 1776000 customers_rows 160 channles_rows 创建完后 跑了一下 no tuning 172706 consistent gets Elapsed: 00:00:22.11 oooooopss~ 22秒 看来需要优化 开始使用 in-memory 组件 来优化 SQL> select * from v$version; BANNER Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production SQL> show parameter inmemory NAME TYPE VALUE ------------------------------------ --------------------------------- ------------------------------ inmemory_clause_default string inmemory_force string DEFAULT inmemory_max_populate_servers integer 7 inmemory_query string ENABLE inmemory_size big integer 16G inmemory_trickle_repopulate_servers_ integer 1 percent optimizer_inmemory_aware boolean TRUE 如果内存有限 可以适当的只存放 需要的 列来降低使用memory alter table SHOUG.times inmemory; alter table SHOUG.sales inmemory; alter table shoug.sales no inmemory(PROD_ID,PROMO_ID,QUANTITY_SOLD); alter table shoug.customers inmemory; alter table SHOUG.channels inmemory; Statistics 41 recursive calls 17 db block gets 54 consistent gets 2 physical reads 1188 redo size 1584 bytes sent via SQLNet to client 562 bytes received via SQLNet from client 3 SQL*Net roundtrips to/from client 5 sorts (memory) 0 sorts (disk) 24 rows processed Elapsed: 00:00:19.70 可以看到 物理读几乎已经很弱了, 但是速度还是不快 优化CPU使用, 可以看到 inmemory 使用后 cpu 使用率达到了100% 但是, 可以看到等待全落在了 单颗 cpu上 所以根据数据量的大小, 来设置并行度 conn shoug/oracle alter table shoug.sales parallel 8; alter table shoug.times parallel 1; alter table shoug.customers parallel 8; alter table shoug.channel parallel 4; select table_name,degree from user_tables; set timing on SELECT /* use inmemory / /+parallel (shoug.customers 8)*/ c.cust_city, t.calendar_quarter_desc, SUM(s.amount_sold) sales_amount FROM SHOUG.sales s, SHOUG.times t, SHOUG.customers c WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id AND c.cust_state_province = 'FL' AND t.calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12') AND s.time_id IN (SELECT time_id FROM SHOUG.times WHERE calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12')) AND s.cust_id IN (SELECT cust_id FROM SHOUG.customers WHERE cust_state_province = 'FL') AND s.channel_id IN (SELECT channel_id FROM SHOUG.channels WHERE channel_desc = 'Direct Sales') GROUP BY c.cust_city, t.calendar_quarter_desc; 24 rows selected. Elapsed: 00:00:01.37 Statistics 203 recursive calls 0 db block gets 254 consistent gets 0 physical reads 0 redo size 1574 bytes sent via SQLNet to client 562 bytes received via SQLNet from client 3 SQL*Net roundtrips to/from client 0 sorts (memory) [root@db ~]# top top - 23:51:34 up 6 days, 18:18, 6 users, load average: 0.65, 0.17, 0.15 Tasks: 391 total, 3 running, 387 sleeping, 0 stopped, 1 zombie Cpu0 : 23.3%us, 0.0%sy, 0.0%ni, 76.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 23.7%us, 0.3%sy, 0.0%ni, 76.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 22.3%us, 0.0%sy, 0.0%ni, 77.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 54.8%us, 0.7%sy, 0.0%ni, 44.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 : 22.1%us, 0.0%sy, 0.0%ni, 77.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 24.3%us, 0.0%sy, 0.0%ni, 75.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 32882416k total, 32061328k used, 821088k free, 13416k buffers Swap: 8388600k total, 52k used, 8388548k free, 30221056k cached 可以看到cpu使用率达到了30% 以上, 并且, 已经没有内存排序 PS: 恭喜 oracle 在12.1.0.2 版本内 以inmemory 列存储的方式 推出了 vector计算方式, 打破了actian vector db 在大数据市场独领风骚的格局。
Related posts:
- COLLABORATE 14 – SHOUG FORUM 上海ORACLE用户组2014年高峰论坛报名
- Oracle OLTP表压缩技术
- 2014年3月21日晚SHOUG上海ORACLE用户组首次线下活动
- SHOUG User Group Young Expert Program
原文地址:基于12c in-memory新特性的SQL优化比拼, 感谢原作者分享。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

HQL和SQL在Hibernate框架中進行比較:HQL(1.物件導向語法,2.資料庫無關的查詢,3.類型安全),而SQL直接操作資料庫(1.與資料庫無關的標準,2.可執行複雜查詢和資料操作)。

時間複雜度衡量演算法執行時間與輸入規模的關係。降低C++程式時間複雜度的技巧包括:選擇合適的容器(如vector、list)以最佳化資料儲存和管理。利用高效演算法(如快速排序)以減少計算時間。消除多重運算以減少重複計算。利用條件分支以避免不必要的計算。透過使用更快的演算法(如二分搜尋)來優化線性搜尋。

MySQL連線數對資料庫效能的影響分析隨著網路應用的不斷發展,資料庫成為了支援應用系統重要的資料儲存和管理工具。在資料庫系統中,連線數是一個重要的概念,它直接關係到資料庫系統的效能和穩定性。本文將從MySQL資料庫的角度出發,探討連線數對資料庫效能的影響,並透過具體的程式碼範例進行分析。一、連線數是什麼?連線數指的是資料庫系統同時支援的客戶端連線數,也可以理

1.在桌面上按組合鍵(win鍵+R)開啟運行窗口,接著輸入【regedit】,回車確認。 2.開啟登錄編輯程式後,我們依序點選展開【HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer】,然後看目錄裡有沒有Serialize項,如果沒有我們可以點選右鍵Explorer,新建項,並將其命名為Serialize。 3.接著點選Serialize,然後在右邊窗格空白處點選滑鼠右鍵,新建一個DWORD(32)位元值,並將其命名為Star

PHP函數效率最佳化的五大方法:避免不必要的變數複製。使用引用以避免變數複製。避免重複函數呼叫。內聯簡單的函數。使用數組優化循環。

Vivox100s參數配置大揭密:處理器效能如何最佳化?在當今科技快速發展的時代,智慧型手機已經成為我們日常生活不可或缺的一部分。作為智慧型手機的重要組成部分,處理器的效能優化直接關係到手機的使用體驗。 Vivox100s作為一款備受矚目的智慧型手機,其參數配置備受關注,尤其是處理器效能的最佳化議題更是備受用戶關注。處理器作為手機的“大腦”,直接影響手機的運行速度

利用雜湊表可最佳化PHP數組交集和並集計算,將時間複雜度從O(n*m)降低到O(n+m),具體步驟如下:使用雜湊表將第一個數組的元素映射到布林值,以快速找出第二個陣列中元素是否存在,提高交集計算效率。使用雜湊表將第一個陣列的元素標記為存在,然後逐一新增第二個陣列的元素,忽略已存在的元素,提高並集計算效率。

PHP函數最佳化秘訣:快取查詢結果以避免重複資料庫存取。減少不必要的函數調用,如使用函數內聯。最佳化演算法,選擇時間複雜度較低的演算法。利用PHP擴展,如Memcached用於緩存,APC用於編譯和緩存PHP腳本。
