目錄
前言
两个数的最值
交换两个数
向量vector
string 类实现
IsAlpha
IsSpace
字符串trim
切割字符串
正则匹配
日志系统
变参的实现
二进制1的个数
整数二进制的位数
模板 堆排序
快速排序
二分查找
数组去重
首頁 資料庫 mysql教程 sphinx 源码阅读之数据结构与算法

sphinx 源码阅读之数据结构与算法

Jun 07, 2016 pm 04:41 PM
sphinx 前言 資料結構 原始碼 演算法 閱讀

前言 源码在 sphinx 官网上就可以下载到. 起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。 于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取

cover

前言

源码在 sphinx 官网上就可以下载到.
起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。
于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取消这个念头。
后来,我想我看sphinx源码主要是先弄明白 sphinx 的工作原理,而工作原理应该一直都是保持不变的,于是我就去下载第一个版本。
第一个版本果然给力,只有 1W 行,于是我就开始高高兴兴的开始从 main 函数开始看源代码了。
看了不就发现 sphinx 用了很多数据结构,而且是自己等装好的,还是先把这些数据结构弄明白了比较好。
于是就有了这篇文章。
为了方便读者阅读,这些数据结构和算法就从简单的慢慢罗列出来。

大家可以看右面的目录,然后去看自己感兴趣的数据结构或算法对应的小节。
如果对那个小节有疑问,可以随时留言。

两个数的最值

sphinx 把最值封装成了一个宏。

#define Min(a,b)            ((a)<(b)?(a):(b))
#define Max(a,b)            ((a)>(b)?(a):(b))
登入後複製

交换两个数

为了这个通用,使用了基本的模板函数。
而交换则使用第三个缓存变量来实现这个功能。

template<typename T> 
inline void Swap(T & v1, T & v2) {
    T temp = v1;
    v1 = v2;
    v2 = temp;
}
登入後複製

向量vector

这个 vector 实现的功能很简单,基本的 insert,remove,get, set 等操作。
只是附加了一个排序功能。
具体实现方式这里就不多说了,这些都是一个类基本的操作,都很容易实现(需要谁需要这个vector的实现讲解,可以留言)。

template<typename T, int INITIAL_LIMIT = 1024> 
class CSphVector {
    public:
        CSphVector(); //初始化向量
        ~CSphVector(); //回收向量
        T & Add(); //增加一个元素,返回这个元素的引用
        void Add(const T & tValue);//增加一个元素
        T & Last();//得到最后一个元素
        void Remove(int iIndex);//删除指定位置的元素
        void Grow(int iNewLimit);//扩大缓存的大小,两倍两倍的增长
        void Resize(int iNewLength);// 原先设置数组的大小
        void Reset();// 重置数组
        int GetLength();//得到数组的长度
        void Sort(int iStart = 0, int iEnd = -1);// 正常排序
        void RSort(int iStart = 0, int iEnd = -1);// 逆序
        const T & operator [](int iIndex) const;// 读指定位置的值
        T & operator [](int iIndex);// 设置指定位置的值
    private:
        int m_iLength;//数组大小
        int m_iLimit;//数组缓存大小
        T * m_pData;//数组
};
登入後複製

string 类实现

这次 sphinx 自己实现的 string 类的功能就比较多了。
这里我罗列出一些比较简单的功能。

struct CSphString{
    CSphString (); //构造
    CSphString ( const char * sString );
    CSphString ( const CSphString & rhs ); 
    CSphString ( const char * sValue, int iLen );
    ~CSphString (); //析构
    const char * cstr () const; //得到字符串
    const char * scstr() const;//得到字符串,默认未空串
    inline bool operator == ( const char * t ) const; //判断两个串是否相等
    inline bool operator == ( const CSphString & t ) const;
    inline bool operator != ( const CSphString & t ) const;
    bool operator != ( const char * t ) const;
    const CSphString & operator = ( const CSphString & rhs );
    CSphString SubString ( int iStart, int iCount ) const;
    bool IsEmpty () const;
    CSphString & ToLower ();
    CSphString & ToUpper ();
    int Length () const;
    bool operator < ( const CSphString & b );
};
登入後複製

IsAlpha

判断一个字符是不是自己想要的字符。

inline int sphIsAlpha ( int c ){
    return ( c>='0' && c<='9' ) || ( c>='a' && c<='z' ) || ( c>='A' && c<='Z' ) || c=='-' || c=='_';
}
登入後複製

IsSpace

判断一个字符是不是空白

inline bool sphIsSpace ( int iCode ){
    return iCode==' ' || iCode=='\t' || iCode=='\n' || iCode=='\r';
}
登入後複製

字符串trim

字符串 trim 这个功能很常用,取出前边和后边的空白。

static char * ltrim ( char * sLine ){
    while ( *sLine && isspace(*sLine) )
        sLine++;
    return sLine;
}
static char * rtrim ( char * sLine ){
    char * p = sLine + strlen(sLine) - 1;
    while ( p>=sLine && isspace(*p) )
        p--;
    p[1] = '\0';
    return sLine;
}
static char * trim ( char * sLine ){
    return ltrim ( rtrim ( sLine ) );
}
登入後複製

切割字符串

切割字符串也是很常用的函数。
一般需要指定分隔符,默认分隔符是空白。
具体的实现代码这里就不展示了。

void sphSplit ( CSphVector<CSphString> & dOut, const char * sIn, const char * sBounds ){
    if ( !sIn )return;
    const char * p = (char*)sIn;
    while ( *p ){
        // skip until the first non-boundary character
        const char * sNext = p;
        while ( *p && !strchr ( sBounds, *p ) )p++;
        // add the token, skip the char
        dOut.Add().SetBinary ( sNext, p-sNext );
        p++;
    }
}
登入後複製

正则匹配

正则表达式大家都用过吧,这次 sphinx 实现了一个简单的正则表达式检验函数。
主要用于检验一个字符串是否符合指定的格式。

bool sphWildcardMatch ( const char * sString, const char * sPattern ){
    if ( !sString || !sPattern )return false;
    const char * s = sString;
    const char * p = sPattern;
    while ( *s ){
        switch ( *p ){
        case '\\':
            // escaped char, strict match the next one literally
            p++;
            if ( *s++!=*p++ )return false;
            break;
        case '?':
            // match any character
            s++;
            p++;
            break;
        case '%':
            // gotta match either 0 or 1 characters
            // well, lets look ahead and see what we need to match next
            p++;
            // just a shortcut, %* can be folded to just *
            if ( *p=='*' )break;
            // plain char after a hash? check the non-ambiguous cases
            if ( !sphIsWild(*p) ){
                if ( s[0]!=*p ){
                    // hash does not match 0 chars
                    // check if we can match 1 char, or it's a no-match
                    if ( s[1]!=*p )return false;
                    s++;
                    break;
                } else{
                    // hash matches 0 chars
                    // check if we could ambiguously match 1 char too, though
                    if ( s[1]!=*p )break;
                    // well, fall through to "scan both options" route
                }
            }
            // could not decide yet
            // so just recurse both options
            if ( sphWildcardMatch ( s, p ) )return true;
            if ( sphWildcardMatch ( s+1, p ) )return true;
            return false;
        case '*':
            // skip all the extra stars and question marks
            for ( p++; *p=='*' || *p=='?'; p++ )
                if ( *p=='?' ){
                    s++;
                    if ( !*s )return p[1]=='\0';
                }
                // short-circuit trailing star
                if ( !*p )return true;
                // so our wildcard expects a real character
                // scan forward for its occurrences and recurse
                for ( ;; ){
                    if ( !*s )return false;
                    if ( *s==*p && sphWildcardMatch ( s+1, p+1 ) )return true;
                    s++;
                }
                break;
        default:
            // default case, strict match
            if ( *s++!=*p++ )return false;
            break;
        }
    }
    // string done
    // pattern should be either done too, or a trailing star, or a trailing hash
    return p[0]=='\0'|| ( p[0]=='*' && p[1]=='\0' )|| ( p[0]=='%' && p[1]=='\0' );
}
登入後複製

日志系统

做项目的时候经常会遇到一些打日志的库,其实这个功能很简单。
基本原理都是使用和 printf 类似的方法: 变参。

static void StdoutLogger ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){
    switch ( eLevel ){
        case SPH_LOG_FATAL: fprintf ( stdout, "FATAL: " ); break;
        case SPH_LOG_WARNING: fprintf ( stdout, "WARNING: " ); break;
        case SPH_LOG_INFO: fprintf ( stdout, "WARNING: " ); break;
        case SPH_LOG_DEBUG:  fprintf ( stdout, "DEBUG: " ); break;
    }
    vfprintf ( stdout, sFmt, ap );
    fprintf ( stdout, "\n" );
}
static SphLogger_fn g_pLogger = &StdoutLogger;
inline void Log ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){
    if ( !g_pLogger ) return;
    ( *g_pLogger ) ( eLevel, sFmt, ap );
}
void sphWarning ( const char * sFmt, ... ){
    va_list ap;
    va_start ( ap, sFmt );
    Log ( SPH_LOG_WARNING, sFmt, ap );
    va_end ( ap );
}
void sphInfo ( const char * sFmt, ... );
void sphLogFatal ( const char * sFmt, ... );
void sphLogDebug ( const char * sFmt, ... );
登入後複製

变参的实现

上面的日志系统,最后还是调用了 vfprintf 函数, 没有让我们看到变参到底怎么实现的。
但是 sphinx 自己实现了一个 sphVSprintf 函数,和 vfprintf 类似,我不明白那个日志系统为什么不用自己的这个输出函数。
由于是对字符串分析,可以理解为一个简单的自动机。
遇到什么字符,期望下个字符是什么。
这里就不多说这个自动机了。

static int sphVSprintf ( char * pOutput, const char * sFmt, va_list ap ){
    enum eStates { SNORMAL, SPERCENT, SHAVEFILL, SINWIDTH, SINPREC };
    eStates state = SNORMAL;
    int iPrec = 0;
    int iWidth = 0;
    char cFill = ' ';
    const char * pBegin = pOutput;
    bool bHeadingSpace = true;
    char c;
    while ( ( c = *sFmt++ )!=0 ){
        // handle percent
        if ( c=='%' ){
            if ( state==SNORMAL ){
                state = SPERCENT;
                iPrec = 0;
                iWidth = 0;
                cFill = ' ';
            } else{
                state = SNORMAL;
                *pOutput++ = c;
            }
            continue;
        }
        // handle regular chars
        if ( state==SNORMAL ){
            *pOutput++ = c;
            continue;
        }
        // handle modifiers
        switch ( c ){
            case '0':
                if ( state==SPERCENT ){
                    cFill = '0';
                    state = SHAVEFILL;
                    break;
                }
            case '1': case '2': case '3':
            case '4': case '5': case '6':
            case '7': case '8': case '9':
                if ( state==SPERCENT || state==SHAVEFILL )
                {
                    state = SINWIDTH;
                    iWidth = c - '0';
                } else if ( state==SINWIDTH )
                    iWidth = iWidth * 10 + c - '0';
                else if ( state==SINPREC )
                    iPrec = iPrec * 10 + c - '0';
                break;
            case '-':
                if ( state==SPERCENT )
                    bHeadingSpace = false;
                else
                    state = SNORMAL; // FIXME? means that bad/unhandled syntax with dash will be just ignored
                break;
            case '.':
                state = SINPREC;
                iPrec = 0;
                break;
            case 's': // string
                {
                    const char * pValue = va_arg ( ap, const char * );
                    if ( !pValue )
                        pValue = "(null)";
                    int iValue = strlen ( pValue );
                    if ( iWidth && bHeadingSpace )
                        while ( iValue < iWidth-- )
                            *pOutput++ = ' ';
                    if ( iPrec && iPrec < iValue )
                        while ( iPrec-- )
                            *pOutput++ = *pValue++;
                    else
                        while ( *pValue )
                            *pOutput++ = *pValue++;
                    if ( iWidth && !bHeadingSpace )
                        while ( iValue < iWidth-- )
                            *pOutput++ = ' ';
                    state = SNORMAL;
                    break;
                }
            case 'p': // pointer
                {
                    void * pValue = va_arg ( ap, void * );
                    uint64_t uValue = uint64_t ( pValue );
                    UItoA ( &pOutput, uValue, 16, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            case 'x': // hex integer
            case 'd': // decimal integer
                {
                    DWORD uValue = va_arg ( ap, DWORD );
                    UItoA ( &pOutput, uValue, ( c=='x' ) ? 16 : 10, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            case 'l': // decimal int64
                {
                    int64_t iValue = va_arg ( ap, int64_t );
                    UItoA ( &pOutput, iValue, 10, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            default:
                state = SNORMAL;
                *pOutput++ = c;
        }
    }
    // final zero to EOL
    *pOutput++ = '\n';
    return pOutput - pBegin;
}
登入後複製

二进制1的个数

之前我曾写过一篇文章详解二进制数中1的个数,大家可以看看。

inline int sphBitCount ( DWORD n ){
    register DWORD tmp;
    tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111);
    return ( (tmp + (tmp >> 3) ) & 030707070707) % 63;
}
登入後複製

整数二进制的位数

/// how much bits do we need for given int
inline int sphLog2 ( uint64_t uValue )
{
#if USE_WINDOWS
    DWORD uRes;
    if ( BitScanReverse ( &uRes, (DWORD)( uValue>>32 ) ) )
        return 33+uRes;
    BitScanReverse ( &uRes, DWORD(uValue) );
    return 1+uRes;
#elif __GNUC__ || __clang__
    if ( !uValue )
        return 0;
    return 64 - __builtin_clzl(uValue);
#else
    int iBits = 0;
    while ( uValue )
    {
        uValue >>= 1;
        iBits++;
    }
    return iBits;
#endif
}
登入後複製

模板 堆排序

这个堆排序写的太奇葩了,哎,不能说什么了。

/// generic accessor
template < typename T > struct SphAccessor_T{
    T & Key ( T * a ) const; //得到指针的值
    void CopyKey ( T * pMed, T * pVal ) const;
    void Swap ( T * a, T * b ) const;
    T * Add ( T * p, int i ) const;//第i个位置的指针
    int Sub ( T * b, T * a ) const;//指针偏移量
};
/// heap sort helper
// 自底向上进行堆排序
//pData 带排序数组
//iStart 开始位置
//iEnd 结束位置
//COMP 比较函数
//ACC 访问指针的类
template < typename T, typename U, typename V >
void sphSiftDown ( T * pData, int iStart, int iEnd, U COMP, V ACC ){
    for ( ;; ){
        int iChild = iStart*2+1;
        if ( iChild>iEnd )return;
        int iChild1 = iChild+1;
        if ( iChild1<=iEnd && COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iChild1 ) ) ) )
            iChild = iChild1;
        if ( COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iStart ) ) ) )
            return;
        ACC.Swap ( ACC.Add ( pData, iChild ), ACC.Add ( pData, iStart ) );
        iStart = iChild;
    }
}
/// heap sort
//奇葩的是先求出最大堆,然后反转,还边反转边维护堆。  
//最终是个最小堆。  
template < typename T, typename U, typename V >
void sphHeapSort ( T * pData, int iCount, U COMP, V ACC ){
    if ( !pData || iCount<=1 )
        return;
    // build a max-heap, so that the largest element is root
    for ( int iStart=( iCount-2 )>>1; iStart>=0; iStart-- )
        sphSiftDown ( pData, iStart, iCount-1, COMP, ACC );
    // now keep popping root into the end of array
    for ( int iEnd=iCount-1; iEnd>0; ){
        ACC.Swap ( pData, ACC.Add ( pData, iEnd ) );
        sphSiftDown ( pData, 0, --iEnd, COMP, ACC );
    }
}
登入後複製

快速排序

sphinx 的快速排序也很奇葩。
一般的快速排序是递归,sphinx使用栈模拟递归。
这样栈的大小大概就是 log(n) 了。
而且栈为空的时候共有 log(n) 次。
当数据特殊的时候,快排会退化为 n^2 的复杂度,这个时候,栈为空的几率变大了。
于是 sphinx 加了个修复, 当栈为空的次数大于 2.5 * log(n), 就是用上面那个奇葩的堆排序。
不过这个优化作用不大。

另外这个快排加了一个小优化:当需要排序的数量小于32时,使用插入排序。

template < typename T, typename U, typename V >
void sphSort ( T * pData, int iCount, U COMP, V ACC ){
    if ( iCount<2 )return;
    typedef T * P;
    // st0 and st1 are stacks with left and right bounds of array-part.
    // They allow us to avoid recursion in quicksort implementation.
    P st0[32], st1[32], a, b, i, j;
    typename V::MEDIAN_TYPE x;
    int k;
    const int SMALL_THRESH = 32;
    int iDepthLimit = sphLog2 ( iCount );
    iDepthLimit = ( ( iDepthLimit<<2 ) + iDepthLimit ) >> 1; // x2.5
    k = 1;
    st0[0] = pData;
    st1[0] = ACC.Add ( pData, iCount-1 );
    while ( k ){
        k--;
        i = a = st0[k];
        j = b = st1[k];
        // if quicksort fails on this data; switch to heapsort
        if ( !k ){
            if ( !--iDepthLimit ){
                sphHeapSort ( a, ACC.Sub ( b, a )+1, COMP, ACC );
                return;
            }
        }
        // for tiny arrays, switch to insertion sort
        int iLen = ACC.Sub ( b, a );
        if ( iLen<=SMALL_THRESH ){
            for ( i=ACC.Add ( a, 1 ); i<=b; i=ACC.Add ( i, 1 ) ){
                for ( j=i; j>a; ){
                    P j1 = ACC.Add ( j, -1 );
                    if ( COMP.IsLess ( ACC.Key(j1), ACC.Key(j) ) )
                        break;
                    ACC.Swap ( j, j1 );
                    j = j1;
                }
            }
            continue;
        }
        // ATTENTION! This copy can lead to memleaks if your CopyKey
        // copies something which is not freed by objects destructor.
        ACC.CopyKey ( &x, ACC.Add ( a, iLen/2 ) );
        while ( a<b ){
            while ( i<=j ){
                while ( COMP.IsLess ( ACC.Key(i), x ) )
                    i = ACC.Add ( i, 1 );
                while ( COMP.IsLess ( x, ACC.Key(j) ) )
                    j = ACC.Add ( j, -1 );
                if ( i<=j ){
                    ACC.Swap ( i, j );
                    i = ACC.Add ( i, 1 );
                    j = ACC.Add ( j, -1 );
                }
            }
            // Not so obvious optimization. We put smaller array-parts
            // to the top of stack. That reduces peak stack size.
            if ( ACC.Sub ( j, a )>=ACC.Sub ( b, i ) ){
                if ( a<j ) { st0[k] = a; st1[k] = j; k++; }
                a = i;
            } else{
                if ( i<b ) { st0[k] = i; st1[k] = b; k++; }
                b = j;
            }
        }
    }
}
登入後複製

二分查找

sphinx 的这个二分查找没有问题,但是和我们平常的二分查找还是有点不同的。
它的左右边界都是开放的,即(a,b).

/// generic binary search
template < typename T, typename U, typename PRED >
T * sphBinarySearch ( T * pStart, T * pEnd, const PRED & tPred, U tRef ){
    if ( tPred(*pStart)==tRef )return pStart;
    if ( tPred(*pEnd)==tRef )return pEnd;
    while ( pEnd-pStart>1 ){
        if ( tRef<tPred(*pStart) || tPred(*pEnd)<tRef )break;
        T * pMid = pStart + (pEnd-pStart)/2;
        if ( tRef==tPred(*pMid) )return pMid;
        if ( tRef<tPred(*pMid) )pEnd = pMid;
        else pStart = pMid;
    }
    return NULL;
}
登入後複製

数组去重

要想去重,首先需要排序,所以这里假设容器是已经排完序的了。
然后假设 iDst 的上一个就是目前比较的值。
如果和上一个相等,则iSrc后移。
如果和上一个不相等,则找到一个新的值,将iDst位置置为新值,个数加1即可。

/// generic uniq
template < typename T, typename T_COUNTER >
T_COUNTER sphUniq ( T * pData, T_COUNTER iCount ){
    if ( !iCount )return 0;
    T_COUNTER iSrc = 1, iDst = 1;
    while ( iSrc<iCount ){
        if ( pData[iDst-1]==pData[iSrc] )iSrc++;
        else pData[iDst++] = pData[iSrc++];
    }
    return iDst;
}
登入後複製
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

使用Java函數比較進行複雜資料結構比較 使用Java函數比較進行複雜資料結構比較 Apr 19, 2024 pm 10:24 PM

Java中比較複雜資料結構時,使用Comparator提供靈活的比較機制。具體步驟包括:定義比較器類,重寫compare方法定義比較邏輯。建立比較器實例。使用Collections.sort方法,傳入集合和比較器實例。

改進的檢測演算法:用於高解析度光學遙感影像目標檢測 改進的檢測演算法:用於高解析度光學遙感影像目標檢測 Jun 06, 2024 pm 12:33 PM

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

演算法在 58 畫像平台建置中的應用 演算法在 58 畫像平台建置中的應用 May 09, 2024 am 09:01 AM

一、58畫像平台建置背景首先和大家分享下58畫像平台的建造背景。 1.傳統的畫像平台傳統的想法已經不夠,建立用戶畫像平台依賴數據倉儲建模能力,整合多業務線數據,建構準確的用戶畫像;還需要數據挖掘,理解用戶行為、興趣和需求,提供演算法側的能力;最後,還需要具備數據平台能力,有效率地儲存、查詢和共享用戶畫像數據,提供畫像服務。業務自建畫像平台和中台類型畫像平台主要區別在於,業務自建畫像平台服務單條業務線,按需定制;中台平台服務多條業務線,建模複雜,提供更為通用的能力。 2.58中台畫像建構的背景58的使用者畫像

Java資料結構與演算法:深入詳解 Java資料結構與演算法:深入詳解 May 08, 2024 pm 10:12 PM

資料結構與演算法是Java開發的基礎,本文深入探討Java中的關鍵資料結構(如陣列、鍊錶、樹等)和演算法(如排序、搜尋、圖演算法等)。這些結構透過實戰案例進行說明,包括使用陣列儲存分數、使用鍊錶管理購物清單、使用堆疊實現遞歸、使用佇列同步執行緒以及使用樹和雜湊表進行快速搜尋和身份驗證等。理解這些概念可以編寫高效且可維護的Java程式碼。

基於全域的圖增強的新聞推薦演算法 基於全域的圖增強的新聞推薦演算法 Apr 08, 2024 pm 09:16 PM

作者|汪昊審校|重樓新聞App是人們日常生活中獲取資訊來源的重要方式。在2010年左右,國外比較火的新聞App包括Zite和Flipboard等,而國內比較火的新聞App主要是四大門戶。而隨著今日頭條為代表的新時代新聞推薦產品的火爆,新聞App進入了全新的時代。而科技公司,不管哪一家,只要掌握了高精尖的新聞推薦演算法技術,就基本在技術層面掌握了主動權和話語權。今天,我們來看看RecSys2023的最佳長篇論文提名獎論文-GoingBeyondLocal:GlobalGraph-EnhancedP

PHP資料結構:AVL樹的平衡之道,維持高效有序的資料結構 PHP資料結構:AVL樹的平衡之道,維持高效有序的資料結構 Jun 03, 2024 am 09:58 AM

AVL樹是一種平衡二元搜尋樹,確保快速且有效率的資料操作。為了實現平衡,它執行左旋和右旋操作,調整違反平衡的子樹。 AVL樹利用高度平衡,確保樹的高度相對於節點數始終較小,從而實現對數時間複雜度(O(logn))的查找操作,即使在大型資料集上也能保持資料結構的效率。

劃重點! !因果推斷兩大演算法框架解析 劃重點! !因果推斷兩大演算法框架解析 Jun 04, 2024 pm 04:45 PM

一、整體框架主要任務可分為三類。首先是因果結構的發現,即從資料中辨識出變數之間的因果關係。其次是因果效應的估計,即從資料推斷一個變數對另一個變數的影響程度。需要注意的是,這種影響並非指相對性,而是指在對一個變數進行幹預時,另一個變數的數值或分佈如何變化。最後是校正偏差,因為在許多任務中,各種因素可能導致開發樣本和應用樣本的分佈不同。在這種情況下,因果推論可能有助於我們進行校正偏差。這些功能適用於多種場景,其中最典型的是決策場景。透過因果推斷,可以了解不同使用者對我們的決策行為的反應。其次,在工業

See all articles