Oracle构建索引index后table的10046数据块读取测试
Oracle构建索引index后table的10046数据块读取测试
Oracle构建索引index后table的10046数据块读取测试
[日期:2013-03-17] 来源:Linux社区 作者:wisdomone1 [字体:]
测试目的
1,未创建索引前的表的扫描情况
1,扫描哪些数据块
2,数据块之间的关系
3,物理读
4,逻辑读
5,以上测试区分:全表扫描与部分表记录扫描
6,扫描数据块是采用单块读取还是多块读取还是先单块读后多块读取?
2,小结:
1,表扫描速度与数据块大小的关系
2,表扫描与并行度设置的关系
3,表扫描与db cache的关系
前文测试了全表扫描的数据块读取情况;如果对表建立了索引,,先读取索引,然后根据ROWID再读取对应表记录的数据块
SQL> create table t_detail(a int);
Table created.
--插入10000条记录
SQL> insert into t_detail select level from dual connect by level
10000 rows created.
SQL> commit;
Commit complete.
SQL> create index idx_t_detail on t_detail(a);
Index created.
--跟踪已建索引的查询
SQL> alter system set events '10046 trace name context level 8';
System altered.
--因表数据量10000条,10046 trace对查询速度有一定影响
SQL> select count(a) from t_detail where a=2000;
COUNT(A)
----------
1
--关闭10046 trace
SQL> alter system set events '10046 trace name context off';
System altered.
--仅摘录10046 trace重要内容
WAIT #2: nam='Disk file operations I/O' ela= 886 FileOperation=2 fileno=10 filetype=2 obj#=69559 tim=31824399508 --先是一个等待事件
WAIT #2: nam='db file sequential read' ela= 20687 file#=10 block#=276483 blocks=1 obj#=69559 tim=31824420353 -单块读 file#=10 block#=276483 blocks=1 obj#=69559
WAIT #2: nam='db file sequential read' ela= 823 file#=10 block#=276488 blocks=1 obj#=69559 tim=31824421542 --继续单块读 file#=10 block#=276488 blocks=1 obj#=69559
FETCH #2:c=0,e=23170,p=2,cr=2,cu=0,mis=0,r=1,dep=0,og=1,plh=1976055679,tim=31824421699 --然后提取数据了
STAT #2 id=1 cnt=1 pid=0 pos=1 bj=0 p='SORT AGGREGATE (cr=2 pr=2 pw=0 time=0 us)'
STAT #2 id=2 cnt=1 pid=1 pos=1 bj=69559 p='INDEX RANGE SCAN IDX_T_DETAIL (cr=2 pr=2 pw=0 time=0 us cost=1 size=13 card=1)'
--上述2个单块读的数据块是什么呢?表还是表所属索引的数据块
--可知上述TRACE中的对象不是表
SQL> select owner,object_name,object_id from dba_objects where object_name='T_DETAIL' and wner='SCOTT';
OWNER OBJECT_NAME OBJECT_ID
------------------------------ -------------------------------------------------------------------------------- ----------
SCOTT T_DETAIL 69558
--是不是索引呢,就是索引,所以单块读先是读取索引的数据块
SQL> select owner,object_name,object_id from dba_objects where object_name='IDX_T_DETAIL' and wner='SCOTT';
OWNER OBJECT_NAME OBJECT_ID
------------------------------ -------------------------------------------------------------------------------- ----------
SCOTT IDX_T_DETAIL 69559
--既然读取索引的数据块,哪这是索引的哪个位置的数据块呢
--index的段头块为276482
SQL> select segment_name,HEADER_FILE,header_block from dba_segments ds where ds.segment_name='IDX_T_DETAIL';
SEGMENT_NAME HEADER_FILE HEADER_BLOCK
-------------------------------------------------------------------------------- ----------- ------------
IDX_T_DETAIL 10 276482

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

是的,可以在 Windows 7 上安裝 MySQL,雖然微軟已停止支持 Windows 7,但 MySQL 仍兼容它。不過,安裝過程中需要注意以下幾點:下載適用於 Windows 的 MySQL 安裝程序。選擇合適的 MySQL 版本(社區版或企業版)。安裝過程中選擇適當的安裝目錄和字符集。設置 root 用戶密碼,並妥善保管。連接數據庫進行測試。注意 Windows 7 上的兼容性問題和安全性問題,建議升級到受支持的操作系統。

InnoDB的全文搜索功能非常强大,能够显著提高数据库查询效率和处理大量文本数据的能力。1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

聚集索引和非聚集索引的區別在於:1.聚集索引將數據行存儲在索引結構中,適合按主鍵查詢和範圍查詢。 2.非聚集索引存儲索引鍵值和數據行的指針,適用於非主鍵列查詢。

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL 數據庫中,用戶和數據庫的關係通過權限和表定義。用戶擁有用戶名和密碼,用於訪問數據庫。權限通過 GRANT 命令授予,而表由 CREATE TABLE 命令創建。要建立用戶和數據庫之間的關係,需創建數據庫、創建用戶,然後授予權限。

MySQL 和 MariaDB 可以共存,但需要謹慎配置。關鍵在於為每個數據庫分配不同的端口號和數據目錄,並調整內存分配和緩存大小等參數。連接池、應用程序配置和版本差異也需要考慮,需要仔細測試和規劃以避免陷阱。在資源有限的情況下,同時運行兩個數據庫可能會導致性能問題。

MySQL支持四種索引類型:B-Tree、Hash、Full-text和Spatial。 1.B-Tree索引適用於等值查找、範圍查詢和排序。 2.Hash索引適用於等值查找,但不支持範圍查詢和排序。 3.Full-text索引用於全文搜索,適合處理大量文本數據。 4.Spatial索引用於地理空間數據查詢,適用於GIS應用。
