HBase数据库性能调优
HBase数据库性能调优,因官方Book Performance Tuning部分章节 没有按配置项进行索引,不能达到快速查阅的效果。所以我以配置项驱
因官方Book Performance Tuning部分章节 没有按配置项进行索引,不能达到快速查阅的效果。所以我以配置项驱动,重新整理了原文,并补充一些自己的理解,如有错误,欢迎指正。
配置优化zookeeper.session.timeout
默认值:3分钟(180000ms)
说明:RegionServer与Zookeeper间的连接超时时间。当超时时间到后,ReigonServer会被Zookeeper从RS集群清单中移除,HMaster收到移除通知后,会对这台server负责的regions重新balance,让其他存活的RegionServer接管.
调优:
这个timeout决定了RegionServer是否能够及时的failover。设置成1分钟或更低,可以减少因等待超时而被延长的failover时间。
不过需要注意的是,对于一些Online应用,RegionServer从宕机到恢复时间本身就很短的(网络闪断,crash等故障,运维可快速介入),,如果调低timeout时间,反而会得不偿失。因为当ReigonServer被正式从RS集群中移除时,HMaster就开始做balance了 (让其他RS根据故障机器记录的WAL日志进行恢复)。当故障的RS在人工介入恢复后,这个balance动作是毫无意义的,反而会使负载不均匀,给RS 带来更多负担。特别是那些固定分配regions的场景。
hbase.regionserver.handler.count
默认值:10
说明:RegionServer的请求处理IO线程数。
调优:
这个参数的调优与内存息息相关。
较少的IO线程,适用于处理单次请求内存消耗较高的Big PUT场景(大容量单次PUT或设置了较大cache的scan,均属于Big PUT)或ReigonServer的内存比较紧张的场景。 【Linux公社 】
较多的IO线程,适用于单次请求内存消耗低,TPS要求非常高的场景。设置该值的时候,以监控内存为主要参考。
这里需要注意的是如果server的region数量很少,大量的请求都落在一个region上,因快速充满memstore触发flush导致的读写锁会影响全局TPS,不是IO线程数越高越好。
压测时,开启Enabling RPC-level logging ,可以同时监控每次请求的内存消耗和GC的状况,最后通过多次压测结果来合理调节IO线程数。
这里是一个案例 Hadoop and HBase Optimization for Read Intensive Search Applications ,作者在SSD的机器上设置IO线程数为100,仅供参考。
hbase.hregion.max.filesize
默认值:256M
说明:在当前ReigonServer上单个Reigon的最大存储空间,单个Region超过该值时,这个Region会被自动split成更小的region。
调优:
小region对split和compaction友好,因为拆分region或compact小region里的storefile速度很快,内存占用低。缺点是split和compaction会很频繁。
特别是数量较多的小region不停地split, compaction,会导致集群响应时间波动很大,region数量太多不仅给管理上带来麻烦,甚至会引发一些Hbase的bug。
一般512以下的都算小region。
大region,则不太适合经常split和compaction,因为做一次compact和split会产生较长时间的停顿,对应用的读写性能冲击非常大。此外,大region意味着较大的storefile,compaction时对内存也是一个挑战。
当然,大region也有其用武之地。如果你的应用场景中,某个时间点的访问量较低,那么在此时做compact和split,既能顺利完成split和compaction,又能保证绝大多数时间平稳的读写性能。
既然split和compaction如此影响性能,有没有办法去掉?
compaction是无法避免的,split倒是可以从自动调整为手动。
只要通过将这个参数值调大到某个很难达到的值,比如100G,就可以间接禁用自动split(RegionServer不会对未到达100G的region做split)。
再配合RegionSplitter这个工具,在需要split时,手动split。
手动split在灵活性和稳定性上比起自动split要高很多,相反,管理成本增加不多,比较推荐online实时系统使用。
内存方面,小region在设置memstore的大小值上比较灵活,大region则过大过小都不行,过大会导致flush时app的IO wait增高,过小则因store file过多影响读性能。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

Oracle 中,FOR LOOP 循環可動態創建游標, 步驟為:1. 定義游標類型;2. 創建循環;3. 動態創建游標;4. 執行游標;5. 關閉游標。示例:可循環創建游標,顯示前 10 名員工姓名和工資。

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

可以通過 EXP 實用程序導出 Oracle 視圖:登錄 Oracle 數據庫。啟動 EXP 實用程序,指定視圖名稱和導出目錄。輸入導出參數,包括目標模式、文件格式和表空間。開始導出。使用 impdp 實用程序驗證導出。

Oracle不僅是數據庫公司,還是雲計算和ERP系統的領導者。 1.Oracle提供從數據庫到雲服務和ERP系統的全面解決方案。 2.OracleCloud挑戰AWS和Azure,提供IaaS、PaaS和SaaS服務。 3.Oracle的ERP系統如E-BusinessSuite和FusionApplications幫助企業優化運營。

Oracle 日誌文件寫滿時,可採用以下解決方案:1)清理舊日誌文件;2)增加日誌文件大小;3)增加日誌文件組;4)設置自動日誌管理;5)重新初始化數據庫。在實施任何解決方案前,建議備份數據庫以防數據丟失。

在CentOS系統上搭建Hadoop分佈式文件系統(HDFS)需要多個步驟,本文提供一個簡要的配置指南。一、前期準備安裝JDK:在所有節點上安裝JavaDevelopmentKit(JDK),版本需與Hadoop兼容。可從Oracle官網下載安裝包。環境變量配置:編輯/etc/profile文件,設置Java和Hadoop的環境變量,使系統能夠找到JDK和Hadoop的安裝路徑。二、安全配置:SSH免密登錄生成SSH密鑰:在每個節點上使用ssh-keygen命令

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。
