首頁 資料庫 mysql教程 全文索引对索引选择的干扰

全文索引对索引选择的干扰

Jun 07, 2016 pm 05:36 PM

mysql全文索引使用得到,对性能提升有一定帮助;但是,若使用不得到,将会是异常灾难;mysql全文索引对整个优化器的索引选择都有干扰。看我生产环境下优化过的一

mysql全文索引使用得到,对性能提升有一定帮助;但是,若使用不得到,将会是异常灾难;mysql全文索引对整个优化器的索引选择都有干扰。看我生产环境下优化过的一条sql

SELECT DISTINCT pc.products_id, pd.products_name,p.products_date_added,pso.products_id FROM products_to_categories AS pc LEFT JOIN products_description AS pd ON pd.products_id=pc.products_id LEFT JOIN products AS p ON p.products_id=pd.products_id LEFT JOIN specials AS sps ON sps.products_id=p.products_id LEFT JOIN temp_products_7days_orders_amount AS 7days ON 7days.products_id=pc.products_id LEFT JOIN products_realtime_quantity AS prq ON prq.sku_or_poa = p.products_model LEFT JOIN products_stockout AS pso ON pso.products_id=pd.products_id WHERE p.products_status=1 AND (prq.msg != 'Temporary out stock.' OR ISNULL(prq.msg)) AND pc.categories_id IN ( 153,323,1055,1241,1431) AND MATCH(pd.products_name) AGAINST('*iphone*' IN BOOLEAN MODE) AND MATCH(pd.products_name) AGAINST('*c*' IN BOOLEAN MODE) ORDER BY 7days.orders_sum DESC

这条语句执行非常慢,经常出现卡住情况,有时候发现执行需要几分钟,而结果才几条,该语句也为涉及到大结果运算,各种连表条件上上都有索引。唯一特殊的地方就是pd.products_name为全文索引,而且执行的过程中pc.categories_id优先级高于pd.products_name全文索引,导致使用了pc.categories_id索引。按理来讲,这样也没有多大关系。但是explain后发现了问题

+----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+ | 1 | SIMPLE | pc | range | PRIMARY,categories_id | categories_id | 4 | NULL | 307 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | pd | fulltext | PRIMARY,products_name | products_name | 0 | | 1 | Using where | | 1 | SIMPLE | p | eq_ref | PRIMARY | PRIMARY | 4 | banggood.pd.products_id | 1 | Using where | | 1 | SIMPLE | sps | ref | products_id | products_id | 4 | banggood.pd.products_id | 16 | Using index | | 1 | SIMPLE | 7days | ref | PRIMARY | PRIMARY | 4 | banggood.p.products_id | 1032 | | | 1 | SIMPLE | prq | ref | ix_prg_sku_or_poa | ix_prg_sku_or_poa | 152 | banggood.p.products_model | 10 | Using where | | 1 | SIMPLE | pso | eq_ref | PRIMARY | PRIMARY | 4 | banggood.pd.products_id | 1 | Using index | +----+-------------+-------+----------+-----------------------+-------------------+---------+---------------------------+------+----------------------------------------------+

我们发现驱动表示pc表,使用了categories_id索引,可能优化器优先选择了它,但是再看pd表,

按理来讲,这个时候pd表应该使用products_id索引,也就是这个表的primary key,但是优化器却选择了products_name全文索引,坑爹了!

profiling这条语句,执行时间为2分钟以上

+-------------------------+------------+-----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +-------------------------+------------+-----------+------------+--------------+---------------+ | starting | 0.000415 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000011 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000056 | 0.001000 | 0.000000 | 0 | 0 | | checking permissions | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000009 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000225 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000029 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000138 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000046 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.001115 | 0.001000 | 0.000000 | 0 | 0 | | preparing | 0.001246 | 0.002000 | 0.000000 | 0 | 0 | | FULLTEXT initialization | 0.000088 | 0.000000 | 0.000000 | 0 | 0 | | Creating tmp table | 0.000057 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Copying to tmp table | 120.430834 | 81.227651 | 38.749110 | 1112 | 0 | | Sorting result | 0.000058 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000041 | 0.001000 | 0.000000 | 0 | 0 | | query end | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | closing tables | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.008546 | 0.000000 | 0.007999 | 0 | 0 | | logging slow query | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | +-------------------------+------------+-----------+------------+--------------+---------------+

看到Copying to tmp table占据了大量的cpu运算。


看来,mysql优化器太弱了,又要我们强制使用索引了!force index(primary) ,强制使用pd表的主键

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1671
14
CakePHP 教程
1428
52
Laravel 教程
1331
25
PHP教程
1276
29
C# 教程
1256
24
MySQL的角色:Web應用程序中的數據庫 MySQL的角色:Web應用程序中的數據庫 Apr 17, 2025 am 12:23 AM

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

說明InnoDB重做日誌和撤消日誌的作用。 說明InnoDB重做日誌和撤消日誌的作用。 Apr 15, 2025 am 12:16 AM

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

MySQL與其他編程語言:一種比較 MySQL與其他編程語言:一種比較 Apr 19, 2025 am 12:22 AM

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL索引基數如何影響查詢性能? MySQL索引基數如何影響查詢性能? Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

初學者的MySQL:開始數據庫管理 初學者的MySQL:開始數據庫管理 Apr 18, 2025 am 12:10 AM

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

MySQL與其他數據庫:比較選項 MySQL與其他數據庫:比較選項 Apr 15, 2025 am 12:08 AM

MySQL適合Web應用和內容管理系統,因其開源、高性能和易用性而受歡迎。 1)與PostgreSQL相比,MySQL在簡單查詢和高並發讀操作上表現更好。 2)相較Oracle,MySQL因開源和低成本更受中小企業青睞。 3)對比MicrosoftSQLServer,MySQL更適合跨平台應用。 4)與MongoDB不同,MySQL更適用於結構化數據和事務處理。

解釋InnoDB緩衝池及其對性能的重要性。 解釋InnoDB緩衝池及其對性能的重要性。 Apr 19, 2025 am 12:24 AM

InnoDBBufferPool通過緩存數據和索引頁來減少磁盤I/O,提升數據庫性能。其工作原理包括:1.數據讀取:從BufferPool中讀取數據;2.數據寫入:修改數據後寫入BufferPool並定期刷新到磁盤;3.緩存管理:使用LRU算法管理緩存頁;4.預讀機制:提前加載相鄰數據頁。通過調整BufferPool大小和使用多個實例,可以優化數據庫性能。

MySQL:結構化數據和關係數據庫 MySQL:結構化數據和關係數據庫 Apr 18, 2025 am 12:22 AM

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

See all articles