首頁 資料庫 mysql教程 2013年大数据全球技术峰会观后感

2013年大数据全球技术峰会观后感

Jun 07, 2016 pm 05:41 PM
全球 高峰會 科技 數據

这次我有幸参加了51CTO举办的2013年大数据峰会,这次大会的主题是大数据的运维(第一天)以及大数据的分析(第二天)。大数据到底是啥意思呢?从字眼上就是很多

这次我有幸参加了51CTO举办的2013年大数据峰会,这次大会的主题是大数据的运维(第一天)以及大数据的分析(第二天)。 

大数据到底是啥意思呢?从字眼上就是很多很大量的数据,可以叫做海量数据。

当数据很小时,你可以用一台机器顶住数据访问压力,再大时你可以加内存换SSD硬盘,或者采购性能很强劲的小型机,通过硬件去解决。

 

从架构层出发,于是就发展到了读写分离,同时有多台Slave备机提供读取业务,这样就降低了数据库的负载。

 

随着数据的增长,发现依靠读写分离也解决不了高负荷高并发的访问,Slave备机延时很大,于是又发展到了对表的水平切分,依靠表的主键取模,把数据平均分散到不同的小表,再分布到各台机器上,可以看做是迁移数据,我之前写过《一篇用户信息表水平切分》的博文,有兴趣的可以去访问:

但这个有一个弊端,就是开发需要更改他们的代码,增加路由访问策略,要知道每张小表是分布到哪台机器上,对开发人员并不是透明的,而对于DBA来说,每次都需要通过手工去拆分,比较繁琐。

 

下面就进入了会议的正题,首先是新浪微博,他们的解决方案是通过数据库前端CACHE层,用redis做缓存,采用nosql型数据库(非传统关系型数据库),降低数据库的负载。他们没有采用memcache,是考虑到数据可以持久化的保存在磁盘上,解决了服务重启后数据不丢失的问题,免备案空间,且存储的数据类型较多。

 

下面是淘宝,虚拟主机,他们的开源软件Oceanbase海量数据平台(数据库中间件),其原理也是通过对主键的取模,香港虚拟主机,把一张大表拆分成N张小表并存储到各台服务器上,前端应用访问海量平台,经过海量平台处理,把请求发送到后端MySQL数据库上,MySQL完成数据查询,再经过中间件,将结果送回客户端。这样对开发来说是透明的,代码层加上API接口,开发不需要知道每张小表具体放在哪台服务器上,DBA也减少了繁琐的水平拆表的工作。

 

目前应用在收藏夹、直通车报表、天猫评价等OLTP和OLAP在线业务,线上数据量已经超过一千亿条。

更多介绍请参考官网:

 

第二天,主要介绍了数据分析与挖掘,当数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。Hadoop基于MapReduce在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,目前已成为当前互联网企业主流的大数据分析平台。

 

目前淘宝,百度,暴风影音,360安全卫士都采用hadoop做海量数据分析。

 

关键词:MySQL、nosql、hadoop已成为当今互联网行业最流行、最前端的技术。

 

 

本文出自 “贺春旸的技术专栏” 博客,请务必保留此出处

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1425
52
Laravel 教程
1324
25
PHP教程
1272
29
C# 教程
1251
24
開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

使用ddrescue在Linux上恢復數據 使用ddrescue在Linux上恢復數據 Mar 20, 2024 pm 01:37 PM

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! Mar 21, 2024 pm 05:21 PM

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

阿里7B多模態文件理解大模型拿下新SOTA 阿里7B多模態文件理解大模型拿下新SOTA Apr 02, 2024 am 11:31 AM

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

See all articles