2013年大数据全球技术峰会观后感
这次我有幸参加了51CTO举办的2013年大数据峰会,这次大会的主题是大数据的运维(第一天)以及大数据的分析(第二天)。大数据到底是啥意思呢?从字眼上就是很多
这次我有幸参加了51CTO举办的2013年大数据峰会,这次大会的主题是大数据的运维(第一天)以及大数据的分析(第二天)。
大数据到底是啥意思呢?从字眼上就是很多很大量的数据,可以叫做海量数据。
当数据很小时,你可以用一台机器顶住数据访问压力,再大时你可以加内存换SSD硬盘,或者采购性能很强劲的小型机,通过硬件去解决。
从架构层出发,于是就发展到了读写分离,同时有多台Slave备机提供读取业务,这样就降低了数据库的负载。
随着数据的增长,发现依靠读写分离也解决不了高负荷高并发的访问,Slave备机延时很大,于是又发展到了对表的水平切分,依靠表的主键取模,把数据平均分散到不同的小表,再分布到各台机器上,可以看做是迁移数据,我之前写过《一篇用户信息表水平切分》的博文,有兴趣的可以去访问:
但这个有一个弊端,就是开发需要更改他们的代码,增加路由访问策略,要知道每张小表是分布到哪台机器上,对开发人员并不是透明的,而对于DBA来说,每次都需要通过手工去拆分,比较繁琐。
下面就进入了会议的正题,首先是新浪微博,他们的解决方案是通过数据库前端CACHE层,用redis做缓存,采用nosql型数据库(非传统关系型数据库),降低数据库的负载。他们没有采用memcache,是考虑到数据可以持久化的保存在磁盘上,解决了服务重启后数据不丢失的问题,免备案空间,且存储的数据类型较多。
下面是淘宝,虚拟主机,他们的开源软件Oceanbase海量数据平台(数据库中间件),其原理也是通过对主键的取模,香港虚拟主机,把一张大表拆分成N张小表并存储到各台服务器上,前端应用访问海量平台,经过海量平台处理,把请求发送到后端MySQL数据库上,MySQL完成数据查询,再经过中间件,将结果送回客户端。这样对开发来说是透明的,代码层加上API接口,开发不需要知道每张小表具体放在哪台服务器上,DBA也减少了繁琐的水平拆表的工作。
目前应用在收藏夹、直通车报表、天猫评价等OLTP和OLAP在线业务,线上数据量已经超过一千亿条。
更多介绍请参考官网:
第二天,主要介绍了数据分析与挖掘,当数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求。Hadoop基于MapReduce在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,目前已成为当前互联网企业主流的大数据分析平台。
目前淘宝,百度,暴风影音,360安全卫士都采用hadoop做海量数据分析。
关键词:MySQL、nosql、hadoop已成为当今互联网行业最流行、最前端的技术。
本文出自 “贺春旸的技术专栏” 博客,请务必保留此出处

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理
