MongoDB 聚合
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数, 复杂的可利用MapReduce做复杂数据分析. 1.count count返回集合中的文档数量 db.refactor.count() 不管集合有多大,都能很快的返回文档数量. 可以传递查询,MongoDB会
MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数,
复杂的可利用MapReduce做复杂数据分析.
1.count
count返回集合中的文档数量
db.refactor.count()
不管集合有多大,都能很快的返回文档数量.
可以传递查询,MongoDB会计算查询结果的数量
db.refactor.count({"username":"refactor"})
但是增加查询条件会使count变慢.
2.distinct
distinct用来找出给定键的所有不同值.使用时必须指定集合和键.
如:
db.runCommand({"distinct":"refactor","key":"username"})
3.group
group先选定分组所依据的键,MongoDB将会将集合依据选定键值的不同分成若干组.然后可以通过聚合每一组内的文档,
产生一个结果文档.
如:
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"condition":{"age":{"$gt":40}}
}
}
)
"ns":"refactor",
指定要进行分组的集合
"key":{"username":true},
指定文档分组的依据,这里是username键,所有username键的值相等的被划分到一组,true为返回键username的值
"initial":{"count":0},
每一组reduce函数调用的初始个数.每一组的所有成员都会使用这个累加器.
"$reduce":function(doc,prev){...}
每个文档都对应的调用一次.系统会传递两个参数:当前文档和累加器文档.
"condition":{"age":{"$gt":40}}
这个age的值大于40的条件
4.使用完成器
完成器用于精简从数据库传到用户的数据.group命令的输出一定要能放在单个数据库相应中.
"finalize"附带一个函数,在数组结果传递到客户端之前被调用一次.
db.runCommand(
{
"group":
{
"ns":"refactor",
"key":{"username":true},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
},
"finalize":function(doc)
{
doc.num=doc.count;
delete doc.count;
}
}
}
)
finalize能修改传递的参数也能返回新值.
5.将数组作为键使用
有些时候分组所依据的条件很复杂,不仅是一个键.比如要使用group计算每个类别有多篇博客文章.由于有很多作者,
给文章分类时可能不规律的使用了大小写.所以,如果要是按类别名来分组,最后"MongoDB"和"mongodb"就是不同的组.
为了消除这种大小写的影响,就要定义一个函数来确定文档所依据的键.
定义分组要用到$keyf
db.runCommand(
{
"group":
{
"ns":"refactor",
"$keyf":function(doc){return {"username":doc.username.toLowerCase()}},
"initial":{"count":0},
"$reduce":function(doc,prev)
{
prev.count++;
}
}
}
)
6.MapReduce
count,distinct,group能做的事情MapReduce都能做.它是一个可以轻松并行化到多个服务器的聚合方法.它会
拆分问题,再将各个部分发送到不同机器上,让每台机器完成一部分.当所有机器都完成时候,再把结果汇集起来形成
最终完整的结果.
MapReduce需要几个步骤:
1.映射,将操作映射到集合中的每个文档.这个操作要么什么都不做,要么 产生一个键和n个值.
2.洗牌,按照键分组,并将产生的键值组成列表放到对应键中.
3.化简,把列表中的值 化简 成一个单值,这个值被返回.
4.重新洗牌,直到每个键的列表只有一个值为止,这个值就是最终结果.
MapReduce的速度比group慢,group也很慢.在应用程序中,最好不要用MapReduce,可以在后台运行MapReduce
创建一个保存结果的集合,可以对这个集合进行实时查询.
找出集合中的所有键
MongoDB没有模式,所以并不知晓每个文档有多少个键.通常找到集合的所有键的做好方式是用MapReduce.
在映射阶段,想得到文档中的每个键.map函数使用emit 返回要处理的值.emit会给MapReduce一个键和一个值.
这里用emit将文档某个键的记数(count)返回({count:1}).我们为每个键单独记数,所以为文档中的每一个键调用一次emit,
this是当前文档的引用:
map=function(){
for(var key in this)
{
emit(key,{count:1})
}
};
这样返回了许许多多的{count:1}文档,每一个都与集合中的一个键相关.这种有一个或多个{count:1}文档组成的数组,
会传递给reduce函数.reduce函数有两个参数,一个是key,也就是emit返回的第一个值,另一个参数是数组,由一个或者多个
对应键的{count:1}文档组成.
reduce=function(key,emits){
total=0;
for(var i in emits){
total+=emits[i].count;
}
return {count:total};
}
reduce要能被反复被调用,不论是映射环节还是前一个化简环节.reduce返回的文档必须能作为reduce的
第二个参数的一个元素.如x键映射到了3个文档{"count":1,id:1},{"count":1,id:2},{"count":1,id:3}
其中id键用于区别.MongoDB可能这样调用reduce:
>r1=reduce("x",[{"count":1,id:1},{"count":1,id:2}])
{count:2}
>r2=reduce("x",[{"count":1,id:3}])
{count:1}
>reduce("x",[r1,r2])
{count:3}
reduce应该能处理emit文档和其他reduce结果的各种集合.
如:
mr=db.runCommand(
{
"mapreduce":"refactor",
"map":map,
"reduce":reduce,
"out":{inline:1}
}
)
或:
db.refactor.mapReduce(map,reduce,{out:{inline:1}})

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

在開發一個電商網站時,我遇到了一個棘手的問題:如何為用戶提供個性化的商品推薦。最初,我嘗試了一些簡單的推薦算法,但效果並不理想,用戶的滿意度也因此受到影響。為了提升推薦系統的精度和效率,我決定採用更專業的解決方案。最終,我通過Composer安裝了andres-montanez/recommendations-bundle,這不僅解決了我的問題,還大大提升了推薦系統的性能。可以通過一下地址學習composer:學習地址

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

CentOS系統上GitLab數據庫部署指南選擇合適的數據庫是成功部署GitLab的關鍵步驟。 GitLab兼容多種數據庫,包括MySQL、PostgreSQL和MongoDB。本文將詳細介紹如何選擇並配置這些數據庫。數據庫選擇建議MySQL:一款廣泛應用的關係型數據庫管理系統(RDBMS),性能穩定,適用於大多數GitLab部署場景。 PostgreSQL:功能強大的開源RDBMS,支持複雜查詢和高級特性,適合處理大型數據集。 MongoDB:流行的NoSQL數據庫,擅長處理海

CentOS系統下MongoDB高效備份策略詳解本文將詳細介紹在CentOS系統上實施MongoDB備份的多種策略,以確保數據安全和業務連續性。我們將涵蓋手動備份、定時備份、自動化腳本備份以及Docker容器環境下的備份方法,並提供備份文件管理的最佳實踐。手動備份:利用mongodump命令進行手動全量備份,例如:mongodump-hlocalhost:27017-u用戶名-p密碼-d數據庫名稱-o/備份目錄此命令會將指定數據庫的數據及元數據導出到指定的備份目錄。

MongoDB與關係型數據庫:深度對比本文將深入探討NoSQL數據庫MongoDB與傳統關係型數據庫(如MySQL和SQLServer)的差異。關係型數據庫採用行和列的表格結構組織數據,而MongoDB則使用靈活的面向文檔模型,更適應現代應用的需求。主要區別數據結構:關係型數據庫使用預定義模式的表格存儲數據,表間關係通過主鍵和外鍵建立;MongoDB使用類似JSON的BSON文檔存儲在集合中,每個文檔結構可獨立變化,實現無模式設計。架構設計:關係型數據庫需要預先定義固定的模式;MongoDB支持

要設置 MongoDB 用戶,請按照以下步驟操作:1. 連接到服務器並創建管理員用戶。 2. 創建要授予用戶訪問權限的數據庫。 3. 使用 createUser 命令創建用戶並指定其角色和數據庫訪問權限。 4. 使用 getUsers 命令檢查創建的用戶。 5. 可選地設置其他權限或授予用戶對特定集合的權限。

在Debian系統上為MongoDB數據庫加密,需要遵循以下步驟:第一步:安裝MongoDB首先,確保您的Debian系統已安裝MongoDB。如果沒有,請參考MongoDB官方文檔進行安裝:https://docs.mongodb.com/manual/tutorial/install-mongodb-on-debian/第二步:生成加密密鑰文件創建一個包含加密密鑰的文件,並設置正確的權限:ddif=/dev/urandomof=/etc/mongodb-keyfilebs=512

連接MongoDB的工具主要有:1. MongoDB Shell,適用於快速查看數據和執行簡單操作;2. 編程語言驅動程序(如PyMongo, MongoDB Java Driver, MongoDB Node.js Driver),適合應用開發,但需掌握其使用方法;3. GUI工具(如Robo 3T, Compass),提供圖形化界面,方便初學者和快速數據查看。選擇工具需考慮應用場景和技術棧,並註意連接字符串配置、權限管理及性能優化,如使用連接池和索引。
