首頁 後端開發 Python教學 python中list列表的高级函数

python中list列表的高级函数

Jun 10, 2016 pm 03:04 PM
list python 清單

在Python所有的数据结构中,list具有重要地位,并且非常的方便,这篇文章主要是讲解list列表的高级应用,基础知识可以查看博客。
此文章为python英文文档的翻译版本,你也可以查看英文版:https://docs.python.org/2/tutorial/datastructures.html

use a list as a stack: #像栈一样使用列表

stack = [3, 4, 5] 
stack.append(6) 
stack.append(7) 
stack 
[3, 4, 5, 6, 7] 
stack.pop() #删除最后一个对象 
7 
stack 
[3, 4, 5, 6] 
stack.pop() 
6 
stack.pop() 
5 
stack 
[3, 4]
登入後複製

use a list as a queue: #像队列一样使用列表

> from collections import deque #这里需要使用模块deque 
> queue = deque(["Eric", "John", "Michael"])
> queue.append("Terry")      # Terry arrives
> queue.append("Graham")     # Graham arrives
> queue.popleft()         # The first to arrive now leaves
'Eric'
> queue.popleft()         # The second to arrive now leaves
'John'
> queue              # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

登入後複製

three built-in functions: 三个重要的内建函数

filter(), map(), and reduce().
1)、filter(function, sequence)::
按照function函数的规则在列表sequence中筛选数据

> def f(x): return x % 3 == 0 or x % 5 == 0
... #f函数为定义整数对象x,x性质为是3或5的倍数
> filter(f, range(2, 25)) #筛选
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24]

登入後複製

2)、map(function, sequence):
map函数实现按照function函数的规则对列表sequence做同样的处理,
这里sequence不局限于列表,元组同样也可。

> def cube(x): return x*x*x #这里是立方计算 还可以使用 x**3的方法
...
> map(cube, range(1, 11)) #对列表的每个对象进行立方计算
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

登入後複製

注意:这里的参数列表不是固定不变的,主要看自定义函数的参数个数,map函数可以变形为:def func(x,y) map(func,sequence1,sequence2) 举例:

 seq = range(8)  #定义一个列表
> def add(x, y): return x+y #自定义函数,有两个形参
...
> map(add, seq, seq) #使用map函数,后两个参数为函数add对应的操作数,如果列表长度不一致会出现错误
[0, 2, 4, 6, 8, 10, 12, 14]
登入後複製

3)、reduce(function, sequence):
reduce函数功能是将sequence中数据,按照function函数操作,如 将列表第一个数与第二个数进行function操作,得到的结果和列表中下一个数据进行function操作,一直循环下去…
举例:

def add(x,y): return x+y
...
reduce(add, range(1, 11))
55

登入後複製

List comprehensions:
这里将介绍列表的几个应用:
squares = [x**2 for x in range(10)]
#生成一个列表,列表是由列表range(10)生成的列表经过平方计算后的结果。
[(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
#[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)] 这里是生成了一个列表,列表的每一项为元组,每个元组是由x和y组成,x是由列表[1,2,3]提供,y来源于[3,1,4],并且满足法则x!=y。

Nested List Comprehensions:
这里比较难翻译,就举例说明一下吧:

matrix = [          #此处定义一个矩阵
...   [1, 2, 3, 4],
...   [5, 6, 7, 8],
...   [9, 10, 11, 12],
... ]
[[row[i] for row in matrix] for i in range(4)]
#[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

登入後複製

这里两层嵌套比较麻烦,简单讲解一下:对矩阵matrix,for row in matrix来取出矩阵的每一行,row[i]为取出每行列表中的第i个(下标),生成一个列表,然后i又是来源于for i in range(4) 这样就生成了一个列表的列表。

The del statement:
删除列表指定数据,举例:

> a = [-1, 1, 66.25, 333, 333, 1234.5]
>del a[0] #删除下标为0的元素
>a
[1, 66.25, 333, 333, 1234.5]
>del a[2:4] #从列表中删除下标为2,3的元素
>a
[1, 66.25, 1234.5]
>del a[:] #全部删除 效果同 del a
>a
[]

登入後複製

Sets: 集合

> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> fruit = set(basket)        # create a set without duplicates
>>> fruit
set(['orange', 'pear', 'apple', 'banana'])
>>> 'orange' in fruit         # fast membership testing
True
>>> 'crabgrass' in fruit
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a                 # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b               # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b               # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b               # letters in both a and b
set(['a', 'c'])
>>> a ^ b               # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

登入後複製

Dictionaries:字典

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127 #相当于向字典中添加数据
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack'] #取数据
4098
>>> del tel['sape'] #删除数据
>>> tel['irv'] = 4127   #修改数据
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()    #取字典的所有key值
['guido', 'irv', 'jack']
>>> 'guido' in tel #判断元素的key是否在字典中
True
>>> tel.get('irv') #取数据
4127

登入後複製

也可以使用规则生成字典:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
登入後複製

enumerate():遍历元素及下标
enumerate 函数用于遍历序列中的元素以及它们的下标:

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
...   print i, v
...
0 tic
1 tac
2 toe
登入後複製

zip():
zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list unzip(解压)。

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
...   print 'What is your {0}? It is {1}.'.format(q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

登入後複製

有关zip举一个简单点儿的例子:

>>> a = [1,2,3]
>>> b = [4,5,6]
>>> c = [4,5,6,7,8]
>>> zipped = zip(a,b)
[(1, 4), (2, 5), (3, 6)]
>>> zip(a,c)
[(1, 4), (2, 5), (3, 6)]
>>> zip(*zipped)
[(1, 2, 3), (4, 5, 6)]
登入後複製

reversed():反转

>>> for i in reversed(xrange(1,10,2)):
...   print i
...

登入後複製

sorted(): 排序

> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
> for f in sorted(set(basket)):       #这里使用了set函数
...   print f
...
apple
banana
orange
pear
登入後複製

python的set和其他语言类似, 是一个 基本功能包括关系测试和消除重复元素.

To change a sequence you are iterating over while inside the loop (for example to duplicate certain items), it is recommended that you first make a copy. Looping over a sequence does not implicitly make a copy. The slice notation makes this especially convenient:

>>> words = ['cat', 'window', 'defenestrate']
>>> for w in words[:]: # Loop over a slice copy of the entire list.
...   if len(w) > 6:
...     words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']
登入後複製

以上就是本文的全部内容,希望对大家的学习有所帮助。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1318
25
PHP教程
1268
29
C# 教程
1248
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles