首頁 後端開發 Python教學 使用Python编写基于DHT协议的BT资源爬虫

使用Python编写基于DHT协议的BT资源爬虫

Jun 10, 2016 pm 03:05 PM
bt p2p python 爬蟲

关于DHT协议

DHT协议作为BT协议的一个辅助,是非常好玩的。它主要是为了在BT正式下载时得到种子或者BT资源。传统的网络,需要一台中央服务器存放种子或者BT资源,不仅浪费服务器资源,还容易出现单点的各种问题,而DHT网络则是为了去中心化,也就是说任意时刻,这个网络总有节点是亮的,你可以去询问问这些亮的节点,从而将自己加入DHT网络。

要实现DHT协议的网络爬虫,主要分3步,第一步是得到资源信息(infohash,160bit,20字节,可以编码为40字节的十六进制字符串),第二步是确认这些infohash是有效的,第三步是通过有效的infohash下载到BT的种子文件,从而得到对这个资源的完整描述。

其中第一步是其他节点用DHT协议中的get_peers方法向爬虫发送请求得到的,第二步是其他节点用DHT协议中的announce_peer向爬虫发送请求得到的,第三步可以有几种方式得到,比如可以去一些保存种子的网站根据infohash直接下载到,或者通过announce_peer的节点来下载到,具体如何实现,可以取决于你自己的爬虫。

DHT协议中的主要几个操作:

主要负责通过UDP与外部节点交互,封装4种基本操作的请求以及相应。

ping:检查一个节点是否“存活”

在一个爬虫里主要有两个地方用到ping,第一是初始路由表时,第二是验证节点是否存活时

find_node:向一个节点发送查找节点的请求

在一个爬虫中主要也是两个地方用到find_node,第一是初始路由表时,第二是验证桶是否存活时

get_peers:向一个节点发送查找资源的请求

在爬虫中有节点向自己请求时不仅像个正常节点一样做出回应,还需要以此资源的info_hash为机会尽可能多的去认识更多的节点。如图,get_peers实际上最后一步是announce_peer,但是因为爬虫不能announce_peer,所以实际上get_peers退化成了find_node操作。

2016319114959666.png (204×120)

announce_peer:向一个节点发送自己已经开始下载某个资源的通知

爬虫中不能用announce_peer,因为这就相当于通报虚假资源,对方很容易从上下文中判断你是否通报了虚假资源从而把你禁掉。

基于Python的DHT爬虫
修改自github开源爬虫,原作者名字有些。。,这里直接将项目地址列出:https://github.com/Fuck-You-GFW/simDHT,有github帐号的请给原作者star,后续我将结果放入db,外加用tornado做一个简单的查询界面出来放在github上,先备份一下代码

#!/usr/bin/env python
# encoding: utf-8

import socket
from hashlib import sha1
from random import randint
from struct import unpack
from socket import inet_ntoa
from threading import Timer, Thread
from time import sleep
from collections import deque

from bencode import bencode, bdecode

BOOTSTRAP_NODES = (
  ("router.bittorrent.com", 6881),
  ("dht.transmissionbt.com", 6881),
  ("router.utorrent.com", 6881)
)
TID_LENGTH = 2
RE_JOIN_DHT_INTERVAL = 3
TOKEN_LENGTH = 2


def entropy(length):
  return "".join(chr(randint(0, 255)) for _ in xrange(length))


def random_id():
  h = sha1()
  h.update(entropy(20))
  return h.digest()


def decode_nodes(nodes):
  n = []
  length = len(nodes)
  if (length % 26) != 0:
    return n

  for i in range(0, length, 26):
    nid = nodes[i:i+20]
    ip = inet_ntoa(nodes[i+20:i+24])
    port = unpack("!H", nodes[i+24:i+26])[0]
    n.append((nid, ip, port))

  return n


def timer(t, f):
  Timer(t, f).start()


def get_neighbor(target, nid, end=10):
  return target[:end]+nid[end:]


class KNode(object):

  def __init__(self, nid, ip, port):
    self.nid = nid
    self.ip = ip
    self.port = port


class DHTClient(Thread):

  def __init__(self, max_node_qsize):
    Thread.__init__(self)
    self.setDaemon(True)
    self.max_node_qsize = max_node_qsize
    self.nid = random_id()
    self.nodes = deque(maxlen=max_node_qsize)

  def send_krpc(self, msg, address):
    try:
      self.ufd.sendto(bencode(msg), address)
    except Exception:
      pass

  def send_find_node(self, address, nid=None):
    nid = get_neighbor(nid, self.nid) if nid else self.nid
    tid = entropy(TID_LENGTH)
    msg = {
      "t": tid,
      "y": "q",
      "q": "find_node",
      "a": {
        "id": nid,
        "target": random_id()
      }
    }
    self.send_krpc(msg, address)

  def join_DHT(self):
    for address in BOOTSTRAP_NODES:
      self.send_find_node(address)

  def re_join_DHT(self):
    if len(self.nodes) == 0:
      self.join_DHT()
    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)

  def auto_send_find_node(self):
    wait = 1.0 / self.max_node_qsize
    while True:
      try:
        node = self.nodes.popleft()
        self.send_find_node((node.ip, node.port), node.nid)
      except IndexError:
        pass
      sleep(wait)

  def process_find_node_response(self, msg, address):
    nodes = decode_nodes(msg["r"]["nodes"])
    for node in nodes:
      (nid, ip, port) = node
      if len(nid) != 20: continue
      if ip == self.bind_ip: continue
      if port < 1 or port > 65535: continue
      n = KNode(nid, ip, port)
      self.nodes.append(n)


class DHTServer(DHTClient):

  def __init__(self, master, bind_ip, bind_port, max_node_qsize):
    DHTClient.__init__(self, max_node_qsize)

    self.master = master
    self.bind_ip = bind_ip
    self.bind_port = bind_port

    self.process_request_actions = {
      "get_peers": self.on_get_peers_request,
      "announce_peer": self.on_announce_peer_request,
    }

    self.ufd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
    self.ufd.bind((self.bind_ip, self.bind_port))

    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)


  def run(self):
    self.re_join_DHT()
    while True:
      try:
        (data, address) = self.ufd.recvfrom(65536)
        msg = bdecode(data)
        self.on_message(msg, address)
      except Exception:
        pass

  def on_message(self, msg, address):
    try:
      if msg["y"] == "r":
        if msg["r"].has_key("nodes"):
          self.process_find_node_response(msg, address)
      elif msg["y"] == "q":
        try:
          self.process_request_actions[msg["q"]](msg, address)
        except KeyError:
          self.play_dead(msg, address)
    except KeyError:
      pass

  def on_get_peers_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      tid = msg["t"]
      nid = msg["a"]["id"]
      token = infohash[:TOKEN_LENGTH]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(infohash, self.nid),
          "nodes": "",
          "token": token
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def on_announce_peer_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      #print msg["a"]
      tname = msg["a"]["name"]
      token = msg["a"]["token"]
      nid = msg["a"]["id"]
      tid = msg["t"]

      if infohash[:TOKEN_LENGTH] == token:
        if msg["a"].has_key("implied_port") and msg["a"]["implied_port"] != 0:
          port = address[1]
        else:
          port = msg["a"]["port"]
          if port < 1 or port > 65535: return
        self.master.log(infohash, (address[0], port),tname)
    except Exception:
      pass
    finally:
      self.ok(msg, address)

  def play_dead(self, msg, address):
    try:
      tid = msg["t"]
      msg = {
        "t": tid,
        "y": "e",
        "e": [202, "Server Error"]
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def ok(self, msg, address):
    try:
      tid = msg["t"]
      nid = msg["a"]["id"]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(nid, self.nid)
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass


class Master(object):
  def log(self, infohash,address=None,tname=None):
    hexinfohash = infohash.encode("hex")
    print "info_hash is: %s,name is: %s from %s:%s" % (
      hexinfohash,tname, address[0], address[1]
  )
    print "magnet:&#63;xt=urn:btih:%s&dn=%s" % (hexinfohash, tname)


# using example
if __name__ == "__main__":
  # max_node_qsize bigger, bandwith bigger, speed higher
  dht = DHTServer(Master(), "0.0.0.0", 6882, max_node_qsize=200)
  dht.start()
  dht.auto_send_find_node()

登入後複製

PS:  DHT协议中有几个重点的需要澄清的地方:

1. node与infohash同样使用160bit的表示方式,160bit意味着整个节点空间有2^160 = 730750818665451459101842416358141509827966271488,是48位10进制,也就是说有百亿亿亿亿亿个节点空间,这么大的节点空间,是足够存放你的主机节点以及任意的资源信息的。

2. 每个节点有张路由表。每张路由表由一堆K桶组成,所谓K桶,就是桶中最多只能放K个节点,默认是8个。而桶的保存则是类似一颗前缀树的方式。相当于一张8桶的路由表中最多有160-4个K桶。

3. 根据DHT协议的规定,每个infohash都是有位置的,因此,两个infohash之间就有距离一说,而两个infohash的距离就可以用异或来表示,即infohash1 xor infohash2,也就是说,高位一样的话,他们的距离就近,反之则远,这样可以快速的计算两个节点的距离。计算这个距离有什么用呢,在DHT网络中,如果一个资源的infohash与一个节点的infohash越近则该节点越有可能拥有该资源的信息,为什么呢?可以想象,因为人人都用同样的距离算法去递归的询问离资源接近的节点,并且只要该节点做出了回应,那么就会得到一个announce信息,也就是说跟资源infohash接近的节点就有更大的概率拿到该资源的infohash

4. 根据上述算法,DHT中的查询是跳跃式查询,可以迅速的跨越的的节点桶而接近目标节点桶。之所以在远处能够大幅度跳跃,而在近处只能小幅度跳跃,原因是每个节点的路由表中离自身越接近的节点保存得越多,如下图

2016319115044824.jpg (490×417)

5. 在一个DHT网络中当爬虫并不容易,不像普通爬虫一样,看到资源就可以主动爬下来,相反,因为得到资源的方式(get_peers, announce_peer)都是被动的,所以爬虫的方式就有些变化了,爬虫所要做的事就是像个正常节点一样去响应其他节点的查询,并且得到其他节点的回应,把其中的数据收集下来就算是完成工作了。而爬虫唯一能做的,是尽可能的去多认识其他节点,这样,才能有更多其他节点来向你询问。

6. 有人说,那么我把DHT爬虫的K桶中的容量K增大是不是就能增加得到资源的机会,其实不然,之前也分析过了,DHT爬虫最重要的信息来源全是被动的,因为你不能增大别人的K,所以距离远的节点保存你自身的概率就越小,当然距离远的节点去请求你的概率相对也比较小。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1322
25
PHP教程
1270
29
C# 教程
1250
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles