Python 爬虫爬取指定博客的所有文章
自上一篇文章 Z Story : Using Django with GAE Python 后台抓取多个网站的页面全文 后,大体的进度如下:
1.增加了Cron: 用来告诉程序每隔30分钟 让一个task 醒来, 跑到指定的那几个博客上去爬取最新的更新
2.用google 的 Datastore 来存贮每次爬虫爬下来的内容。。只存贮新的内容。。
就像上次说的那样,这样以来 性能有了大幅度的提高: 原来的每次请求后, 爬虫才被唤醒 所以要花大约17秒的时间才能从后台输出到前台而现在只需要2秒不到
3.对爬虫进行了优化
1. Cron.yaml 来安排每个程序醒来的时间
经过翻文档, 问问题终于弄明白google的cron的工作原理--实际上只是google每隔指定的时间虚拟地访问一个我们自己指定的url…
因此在Django 下, 根本不需要写一个纯的python 程序 一定不要写:
if __name__=="__main__":
只需要自己配置一个url 放在views.py里:
def updatePostsDB(request): #deleteAll() SiteInfos=[] SiteInfo={} SiteInfo['PostSite']="L2ZStory" SiteInfo['feedurl']="feed://l2zstory.wordpress.com/feed/" SiteInfo['blog_type']="wordpress" SiteInfos.append(SiteInfo) SiteInfo={} SiteInfo['PostSite']="YukiLife" SiteInfo['feedurl']="feed://blog.sina.com.cn/rss/1583902832.xml" SiteInfo['blog_type']="sina" SiteInfos.append(SiteInfo) SiteInfo={} SiteInfo['PostSite']="ZLife" SiteInfo['feedurl']="feed://ireallife.wordpress.com/feed/" SiteInfo['blog_type']="wordpress" SiteInfos.append(SiteInfo) SiteInfo={} SiteInfo['PostSite']="ZLife_Sina" SiteInfo['feedurl']="feed://blog.sina.com.cn/rss/1650910587.xml" SiteInfo['blog_type']="sina" SiteInfos.append(SiteInfo) try: for site in SiteInfos: feedurl=site['feedurl'] blog_type=site['blog_type'] PostSite=site['PostSite'] PostInfos=getPostInfosFromWeb(feedurl,blog_type) recordToDB(PostSite,PostInfos) Msg="Cron Job Done..." except Exception,e: Msg=str(e) return HttpResponse(Msg)
cron.yaml 要放在跟app.yaml同一个级别上:
cron:
- description: retrieve newest posts
url: /task_updatePosts/
schedule: every 30 minutes
在url.py 里只要指向这个把task_updatePostsDB 指向url就好了
调试这个cron的过程可以用惨烈来形容。。。在stackoverflow上有很多很多人在问为什么自己的cron不能工作。。。我一开始也是满头是汗,找不着头脑。。。最后侥幸弄好了,大体步骤也是空泛的很。。但是很朴实:
首先,一定要确保自己的程序没有什么syntax error….然后可以自己试着手动访问一下那个url 如果cron 正常的话,这个时候任务应该已经被执行了 最后实在不行的话多看看log…
2. Datastore的配置和利用--Using Datastore with Django
我的需求在这里很简单--没有join…所以我就直接用了最简陋的django-helper..
这个models.py 是个重点:
from appengine_django.models import BaseModel
from google.appengine.ext import db
classPostsDB(BaseModel):
link=db.LinkProperty()
title=db.StringProperty()
author=db.StringProperty()
date=db.DateTimeProperty()
description=db.TextProperty()
postSite=db.StringProperty()
前两行是重点中的重点。。。。我一开始天真没写第二行。。。结果我花了2个多小时都没明白是怎么回事。。得不偿失。。。
读写的时候, 千万别忘了。。。PostDB.put()
一开始的时候,我为了省事,就直接每次cron被唤醒, 就删除全部的数据, 然后重新写入新爬下来的数据。。。
结果。。。一天过后。。。有4万条读写纪录。。。。而每天免费的只有5万条。。。。
所以就改为在插入之前先看看有没有更新, 有的话就写,没的话就不写。。总算把数据库这部分搞好了。。。
3.爬虫的改进:
一开始的时候,爬虫只是去爬feed里给的文章。。这样一来,如果一个博客有24*30篇文章的话。。。最多只能拿到10篇。。。。
这次,改进版能爬所有的文章。。我分别拿孤独川陵, 韩寒, Yuki和Z的博客做的试验。。成功的很。。。其中孤独川陵那里有720+篇文章。。。无遗漏掉的被爬下来了。。
import urllib #from BeautifulSoup import BeautifulSoup from pyquery import PyQuery as pq def getArticleList(url): lstArticles=[] url_prefix=url[:-6] Cnt=1 response=urllib.urlopen(url) html=response.read() d=pq(html) try: pageCnt=d("ul.SG_pages").find('span') pageCnt=int(d(pageCnt).text()[1:-1]) except: pageCnt=1 for i in range(1,pageCnt+1): url=url_prefix+str(i)+".html" #print url response=urllib.urlopen(url) html=response.read() d=pq(html) title_spans=d(".atc_title").find('a') date_spans=d('.atc_tm') for j in range(0,len(title_spans)): titleObj=title_spans[j] dateObj=date_spans[j] article={} article['link']= d(titleObj).attr('href') article['title']= d(titleObj).text() article['date']=d(dateObj).text() article['desc']=getPageContent(article['link']) lstArticles.append(article) return lstArticles def getPageContent(url): #get Page Content response=urllib.urlopen(url) html=response.read() d=pq(html) pageContent=d("div.articalContent").text() #print pageContent return pageContent def main(): url='http://blog.sina.com.cn/s/articlelist_1191258123_0_1.html'#Han Han url="http://blog.sina.com.cn/s/articlelist_1225833283_0_1.html"#Gu Du Chuan Ling url="http://blog.sina.com.cn/s/articlelist_1650910587_0_1.html"#Feng url="http://blog.sina.com.cn/s/articlelist_1583902832_0_1.html"#Yuki lstArticles=getArticleList(url) for article in lstArticles: f=open("blogs/"+article['date']+"_"+article['title']+".txt",'w') f.write(article['desc'].encode('utf-8')) #特别注意对中文的处理 f.close() #print article['desc'] if __name__=='__main__': main()
对PyQuery的推荐。。
很遗憾的说, BueautifulSoup让我深深的失望了。。。在我写上篇文章的时候,当时有个小bug..一直找不到原因。。在我回家后,又搭上了很多时间试图去弄明白为什么BueautifulSoup一直不能抓到我想要的内容。。。后来大体看了看它selector部分的源代码觉得应该是它对于很多还有<script>tag的不规范html页面的解析不准确。。。</script>
我放弃了这个库, 又试了lxml..基于xpath 很好用。。但是xpath的东西我老是需要查文档。。。所以我又找了个库PyQuery…可以用jQuery选择器的工具。。。非常非常非常好用。。。。具体的用法就看上面吧。。。这个库有前途。。。
隐忧
因为pyquery基于lxml…而lxml的底层又是c…所以估计在gae上用不了。。。我这个爬虫只能现在在我的电脑上爬好东西。。。然后push到server上。。。
总结
一句话, 我爱死Python了
两句话, 我爱死Python了,我爱死Django了
三句话, 我爱死Python了,我爱死Django了,我爱死jQuery了。。。
四句号, 我爱死Python了,我爱死Django了,我爱死jQuery了,我爱死pyQuery了。。。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
