首頁 後端開發 Python教學 通过数据库向Django模型添加字段的示例

通过数据库向Django模型添加字段的示例

Jun 10, 2016 pm 03:09 PM
django 模型

首先借用书本(book)的这个数据模型:

from django.db import models

class Publisher(models.Model):
  name = models.CharField(max_length=30)
  address = models.CharField(max_length=50)
  city = models.CharField(max_length=60)
  state_province = models.CharField(max_length=30)
  country = models.CharField(max_length=50)
  website = models.URLField()

  def __unicode__(self):
    return self.name

class Author(models.Model):
  first_name = models.CharField(max_length=30)
  last_name = models.CharField(max_length=40)
  email = models.EmailField()

  def __unicode__(self):
    return u'%s %s' % (self.first_name, self.last_name)

class Book(models.Model):
  title = models.CharField(max_length=100)
  authors = models.ManyToManyField(Author)
  publisher = models.ForeignKey(Publisher)
  publication_date = models.DateField()

  def __unicode__(self):
    return self.title

登入後複製


添加字段
当要向一个产品设置表(或者说是model)添加一个字段的时候,要使用的技巧是利用Django不关心表里是否包含model里所没有的列的特性。 策略就是现在数据库里加入字段,然后同步Django的模型以包含新字段。

然而 这里有一个鸡生蛋蛋生鸡的问题 ,由于要想了解新增列的SQL语句,你需要使用Django的 manage.py sqlall命令进行查看 ,而这又需要字段已经在模型里存在了。 (注意:你并 不是非得使用与Django相同的SQL语句创建新的字段,但是这样做确实是一个好主意 ,它能让一切都保持同步。)

这个鸡-蛋的问题的解决方法是在开发者环境里而不是发布环境里实现这个变化。 (你正使用的是测试/开发环境,对吧?)下面是具体的实施步骤。

首先,进入开发环境(也就是说,不是在发布环境里):

在你的模型里添加字段。

运行 manage.py sqlall [yourapp] 来测试模型新的 CREATE TABLE 语句。 注意为新字段的列定义。

开启你的数据库的交互命令界面(比如, psql 或mysql , 或者可以使用 manage.py dbshell )。 执行 ALTER TABLE 语句来添加新列。

使用Python的manage.py shell,通过导入模型和选中表单(例如, MyModel.objects.all()[:5] )来验证新的字段是否被正确的添加 ,如果一切顺利,所有的语句都不会报错。

然后在你的产品服务器上再实施一遍这些步骤。

启动数据库的交互界面。

执行在开发环境步骤中,第三步的ALTER TABLE语句。

将新的字段加入到模型中。 如果你使用了某种版本控制工具,并且在第一步中,已经提交了你在开发环境上的修改,现在,可以在生产环境中更新你的代码了(例如,如果你使用Subversion,执行svn update。

重新启动Web server,使修改生效。

让我们实践下,比如添加一个num_pages字段到第五章中Book模型。首先,我们会把开发环境中的模型改成如下形式:

class Book(models.Model):
  title = models.CharField(max_length=100)
  authors = models.ManyToManyField(Author)
  publisher = models.ForeignKey(Publisher)
  publication_date = models.DateField()
  **num_pages = models.IntegerField(blank=True, null=True)**

  def __unicode__(self):
    return self.title

登入後複製


然后,我们运行命令manage.py sqlall books 来查看CREATE TABLE语句。 语句的具体内容取决与你所使用的数据库, 大概是这个样子:

CREATE TABLE "books_book" (
  "id" serial NOT NULL PRIMARY KEY,
  "title" varchar(100) NOT NULL,
  "publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
  "publication_date" date NOT NULL,
  "num_pages" integer NULL
);

登入後複製

新加的字段被这样表示:

"num_pages" integer NULL

登入後複製

接下来,我们要在开发环境上运行数据库客户端,如果是PostgreSQL,运行 psql,,然后,我执行如下语句。

ALTER TABLE books_book ADD COLUMN num_pages integer;

登入後複製

添加 非NULL 字段

这里有个微妙之处值得一提。 在我们添加字段num_pages的时候,我们使用了 blank=True 和 null=True 选项。 这是因为在我们第一次创建它的时候,这个数据库字段会含有空值。

然而,想要添加不能含有空值的字段也是可以的。 要想实现这样的效果,你必须先创建 NULL 型的字段,然后将该字段的值填充为某个默认值,然后再将该字段改为 NOT NULL 型。 例如:

BEGIN;
ALTER TABLE books_book ADD COLUMN num_pages integer;
UPDATE books_book SET num_pages=0;
ALTER TABLE books_book ALTER COLUMN num_pages SET NOT NULL;
COMMIT;

登入後複製

如果你这样做,记得你不要在模型中添加 blank=True 和 null=True 选项。

执行ALTER TABLE之后,我们要验证一下修改结果是否正确。启动python并执行下面的代码:

>>> from mysite.books.models import Book
>>> Book.objects.all()[:5]

登入後複製

如果没有异常发生,我们将切换到生产服务器,然后在生产环境的数据库中执行命令ALTER TABLE 然后我们更新生产环境中的模型,最后重启web服务器。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! Mar 21, 2024 pm 05:21 PM

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

See all articles