首頁 後端開發 Python教學 解析Python中的异常处理

解析Python中的异常处理

Jun 10, 2016 pm 03:14 PM
python

在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错,以及出错的原因。在操作系统提供的调用中,返回错误码非常常见。比如打开文件的函数open(),成功时返回文件描述符(就是一个整数),出错时返回-1。

用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错:

def foo():
 r = some_function()
 if r==(-1):
  return (-1)
 # do something
 return r

def bar():
 r = foo()
 if r==(-1):
  print 'Error'
 else:
  pass

登入後複製

一旦出错,还要一级一级上报,直到某个函数可以处理该错误(比如,给用户输出一个错误信息)。

所以高级语言通常都内置了一套try...except...finally...的错误处理机制,Python也不例外。
try

让我们用一个例子来看看try的机制:

try:
 print 'try...'
 r = 10 / 0
 print 'result:', r
except ZeroDivisionError, e:
 print 'except:', e
finally:
 print 'finally...'
print 'END'

登入後複製

当我们认为某些代码可能会出错时,就可以用try来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except语句块,执行完except后,如果有finally语句块,则执行finally语句块,至此,执行完毕。

上面的代码在计算10 / 0时会产生一个除法运算错误:

try...
except: integer division or modulo by zero
finally...
END

登入後複製

从输出可以看到,当错误发生时,后续语句print 'result:', r不会被执行,except由于捕获到ZeroDivisionError,因此被执行。最后,finally语句被执行。然后,程序继续按照流程往下走。

如果把除数0改成2,则执行结果如下:

try...
result: 5
finally...
END

登入後複製

由于没有错误发生,所以except语句块不会被执行,但是finally如果有,则一定会被执行(可以没有finally语句)。

你还可以猜测,错误应该有很多种类,如果发生了不同类型的错误,应该由不同的except语句块处理。没错,可以有多个except来捕获不同类型的错误:

try:
 print 'try...'
 r = 10 / int('a')
 print 'result:', r
except ValueError, e:
 print 'ValueError:', e
except ZeroDivisionError, e:
 print 'ZeroDivisionError:', e
finally:
 print 'finally...'
print 'END'

登入後複製

int()函数可能会抛出ValueError,所以我们用一个except捕获ValueError,用另一个except捕获ZeroDivisionError。

此外,如果没有错误发生,可以在except语句块后面加一个else,当没有错误发生时,会自动执行else语句:

try:
 print 'try...'
 r = 10 / int('a')
 print 'result:', r
except ValueError, e:
 print 'ValueError:', e
except ZeroDivisionError, e:
 print 'ZeroDivisionError:', e
else:
 print 'no error!'
finally:
 print 'finally...'
print 'END'

登入後複製

Python的错误其实也是class,所有的错误类型都继承自BaseException,所以在使用except时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:

try:
 foo()
except StandardError, e:
 print 'StandardError'
except ValueError, e:
 print 'ValueError'

登入後複製

第二个except永远也捕获不到ValueError,因为ValueError是StandardError的子类,如果有,也被第一个except给捕获了。

Python所有的错误都是从BaseException类派生的,常见的错误类型和继承关系看这里:

https://docs.python.org/2/library/exceptions.html#exception-hierarchy

使用try...except捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()调用foo(),foo()调用bar(),结果bar()出错了,这时,只要main()捕获到了,就可以处理:

def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 try:
  bar('0')
 except StandardError, e:
  print 'Error!'
 finally:
  print 'finally...'

登入後複製

也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally的麻烦。
调用堆栈

如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py:

# err.py:
def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 bar('0')

main()

登入後複製

执行,结果如下:

$ python err.py
Traceback (most recent call last):
 File "err.py", line 11, in <module>
 main()
 File "err.py", line 9, in main
 bar('0')
 File "err.py", line 6, in bar
 return foo(s) * 2
 File "err.py", line 3, in foo
 return 10 / int(s)
ZeroDivisionError: integer division or modulo by zero

登入後複製

出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:

错误信息第1行:

Traceback (most recent call last):

登入後複製

告诉我们这是错误的跟踪信息。

第2行:

 File "err.py", line 11, in <module>
 main()

登入後複製

调用main()出错了,在代码文件err.py的第11行代码,但原因是第9行:

 File "err.py", line 9, in main
 bar('0')

登入後複製

调用bar('0')出错了,在代码文件err.py的第9行代码,但原因是第6行:

 File "err.py", line 6, in bar
 return foo(s) * 2

登入後複製

原因是return foo(s) * 2这个语句出错了,但这还不是最终原因,继续往下看:

 File "err.py", line 3, in foo
 return 10 / int(s)

登入後複製

原因是return 10 / int(s)这个语句出错了,这是错误产生的源头,因为下面打印了:

ZeroDivisionError: integer division or modulo by zero

根据错误类型ZeroDivisionError,我们判断,int(s)本身并没有出错,但是int(s)返回0,在计算10 / 0时出错,至此,找到错误源头。
记录错误

如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。

Python内置的logging模块可以非常容易地记录错误信息:

# err.py
import logging

def foo(s):
 return 10 / int(s)

def bar(s):
 return foo(s) * 2

def main():
 try:
  bar('0')
 except StandardError, e:
  logging.exception(e)

main()
print 'END'

登入後複製

同样是出错,但程序打印完错误信息后会继续执行,并正常退出:

$ python err.py
ERROR:root:integer division or modulo by zero
Traceback (most recent call last):
 File "err.py", line 12, in main
 bar('0')
 File "err.py", line 8, in bar
 return foo(s) * 2
 File "err.py", line 5, in foo
 return 10 / int(s)
ZeroDivisionError: integer division or modulo by zero
END

登入後複製

通过配置,logging还可以把错误记录到日志文件里,方便事后排查。
抛出错误

因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。

如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise语句抛出一个错误的实例:

# err.py
class FooError(StandardError):
 pass

def foo(s):
 n = int(s)
 if n==0:
  raise FooError('invalid value: %s' % s)
 return 10 / n

登入後複製

执行,可以最后跟踪到我们自己定义的错误:

$ python err.py
Traceback (most recent call last):
 ...
__main__.FooError: invalid value: 0

登入後複製

只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueError,TypeError),尽量使用Python内置的错误类型。

最后,我们来看另一种错误处理的方式:

# err.py
def foo(s):
 n = int(s)
 return 10 / n

def bar(s):
 try:
  return foo(s) * 2
 except StandardError, e:
  print 'Error!'
  raise

def main():
 bar('0')

main()

登入後複製

在bar()函数中,我们明明已经捕获了错误,但是,打印一个Error!后,又把错误通过raise语句抛出去了,这不有病么?

其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。

raise语句如果不带参数,就会把当前错误原样抛出。此外,在except中raise一个Error,还可以把一种类型的错误转化成另一种类型:

try:
 10 / 0
except ZeroDivisionError:
 raise ValueError('input error!')

登入後複製

只要是合理的转换逻辑就可以,但是,决不应该把一个IOError转换成毫不相干的ValueError。
小结

Python内置的try...except...finally用来处理错误十分方便。出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。

程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mysql 是否要付費 mysql 是否要付費 Apr 08, 2025 pm 05:36 PM

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

HadiDB:Python 中的輕量級、可水平擴展的數據庫 HadiDB:Python 中的輕量級、可水平擴展的數據庫 Apr 08, 2025 pm 06:12 PM

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

mysql workbench 可以連接到 mariadb 嗎 mysql workbench 可以連接到 mariadb 嗎 Apr 08, 2025 pm 02:33 PM

MySQL Workbench 可以連接 MariaDB,前提是配置正確。首先選擇 "MariaDB" 作為連接器類型。在連接配置中,正確設置 HOST、PORT、USER、PASSWORD 和 DATABASE。測試連接時,檢查 MariaDB 服務是否啟動,用戶名和密碼是否正確,端口號是否正確,防火牆是否允許連接,以及數據庫是否存在。高級用法中,使用連接池技術優化性能。常見錯誤包括權限不足、網絡連接問題等,調試錯誤時仔細分析錯誤信息和使用調試工具。優化網絡配置可以提升性能

Navicat查看MongoDB數據庫密碼的方法 Navicat查看MongoDB數據庫密碼的方法 Apr 08, 2025 pm 09:39 PM

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

mysql 無法連接到本地主機怎麼解決 mysql 無法連接到本地主機怎麼解決 Apr 08, 2025 pm 02:24 PM

無法連接 MySQL 可能是由於以下原因:MySQL 服務未啟動、防火牆攔截連接、端口號錯誤、用戶名或密碼錯誤、my.cnf 中的監聽地址配置不當等。排查步驟包括:1. 檢查 MySQL 服務是否正在運行;2. 調整防火牆設置以允許 MySQL 監聽 3306 端口;3. 確認端口號與實際端口號一致;4. 檢查用戶名和密碼是否正確;5. 確保 my.cnf 中的 bind-address 設置正確。

mysql 需要互聯網嗎 mysql 需要互聯網嗎 Apr 08, 2025 pm 02:18 PM

MySQL 可在無需網絡連接的情況下運行,進行基本的數據存儲和管理。但是,對於與其他系統交互、遠程訪問或使用高級功能(如復制和集群)的情況,則需要網絡連接。此外,安全措施(如防火牆)、性能優化(選擇合適的網絡連接)和數據備份對於連接到互聯網的 MySQL 數據庫至關重要。

如何針對高負載應用程序優化 MySQL 性能? 如何針對高負載應用程序優化 MySQL 性能? Apr 08, 2025 pm 06:03 PM

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

如何將 AWS Glue 爬網程序與 Amazon Athena 結合使用 如何將 AWS Glue 爬網程序與 Amazon Athena 結合使用 Apr 09, 2025 pm 03:09 PM

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。

See all articles