详解在Python和IPython中使用Docker
现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它。
话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例。
这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython。
安装docker-py
首先需要docker-py。注意这里的案例中我将会使用Ubuntu Trusty 14.04版本。
$ pip install docker-py
IPyhton
我真的很喜欢用IPython来探索Python。 它像是一共高级的python Shell,但是可以做的更多。
$ sudo apt-get install ipython
SNIP!
$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.
IPython 1.2.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]:
安装 docker
如果没有安装Docker,那首先安装docker
$ sudo apt-get install docker.io
然后把 docker.io 起个别名 docker
$ alias docker='docker.io'
$ docker version
Client version: 0.9.1
Go version (client): go1.2.1
Git commit (client): 3600720
Server version: 0.9.1
Git commit (server): 3600720
Go version (server): go1.2.1
Last stable version: 0.11.1, please update docker
Docker现在应该有个socket开启,我们可以用来连接。
$ ls /var/run/docker.sock
/var/run/docker.sock
Pull 镜像
让我们下载 busybox镜像
$ docker pull busybox
Pulling repository busybox
71e18d715071: Download complete
98b9fdab1cb6: Download complete
1277aa3f93b3: Download complete
6e0a2595b580: Download complete
511136ea3c5a: Download complete
b6c0d171b362: Download complete
8464f9ac64e8: Download complete
9798716626f6: Download complete
fc1343e2fca0: Download complete
f3c823ac7aa6: Download complete
现在我们准备使用 docker-py 了。
使用 docker-py
现在我们有了docker-py , IPython, Docker 和 busybox 镜像,我们就能建立一些容器。
如果你不是很熟悉IPython,可以参照这个教程学习(http://ipython.org/ipython-doc/stable/interactive/tutorial.html),
IPython是十分强大的。
首先启动一个IPython ,导入docker模块。
$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.
IPython 1.2.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import docker
然后我们建立一个连接到Docker
In [2]: c = docker.Client(base_url='unix://var/run/docker.sock',
...: version='1.9',
...: timeout=10)
现在我们已经连接到Docker。
IPython使用tab键来补全的。 如果 输入 “c.” 然后按下tab键,IPython会显示Docker连接对象所有的方法和属性。
In [3]: c.
c.adapters c.headers c.pull
c.attach c.history c.push
c.attach_socket c.hooks c.put
c.auth c.images c.remove_container
c.base_url c.import_image c.remove_image
c.build c.info c.request
c.cert c.insert c.resolve_redirects
c.close c.inspect_container c.restart
c.commit c.inspect_image c.search
c.containers c.kill c.send
c.cookies c.login c.start
c.copy c.logs c.stop
c.create_container c.max_redirects c.stream
c.create_container_from_config c.mount c.tag
c.delete c.options c.top
c.diff c.params c.trust_env
c.events c.patch c.verify
c.export c.port c.version
c.get c.post c.wait
c.get_adapter c.prepare_request
c.head c.proxies
让我们来看下c.images 我输入一个 “?”在c.之后,ipython 会提供这个对象的详细信息。
In [5]: c.images?
Type: instancemethod
String Form:
File: /usr/local/lib/python2.7/dist-packages/docker/client.py
Definition: c.images(self, name=None, quiet=False, all=False, viz=False)
Docstring:
获取busybox 镜像。
In [6]: c.images(name="busybox")
Out[6]:
[{u'Created': 1401402591,
u'Id': u'71e18d715071d6ba89a041d1e696b3d201e82a7525fbd35e2763b8e066a3e4de',
u'ParentId': u'8464f9ac64e87252a91be3fbb99cee20cda3188de5365bec7975881f389be343',
u'RepoTags': [u'busybox:buildroot-2013.08.1'],
u'Size': 0,
u'VirtualSize': 2489301},
{u'Created': 1401402590,
u'Id': u'1277aa3f93b3da774690bc4f0d8bf257ff372e23310b4a5d3803c180c0d64cd5',
u'ParentId': u'f3c823ac7aa6ef78d83f19167d5e2592d2c7f208058bc70bf5629d4bb4ab996c',
u'RepoTags': [u'busybox:ubuntu-14.04'],
u'Size': 0,
u'VirtualSize': 5609404},
{u'Created': 1401402589,
u'Id': u'6e0a2595b5807b4f8c109f3c6c5c3d59c9873a5650b51a4480b61428427ab5d8',
u'ParentId': u'fc1343e2fca04a455f803ba66d1865739e0243aca6c9d5fd55f4f73f1e28456e',
u'RepoTags': [u'busybox:ubuntu-12.04'],
u'Size': 0,
u'VirtualSize': 5454693},
{u'Created': 1401402587,
u'Id': u'98b9fdab1cb6e25411eea5c44241561326c336d3e0efae86e0239a1fe56fbfd4',
u'ParentId': u'9798716626f6ae4e6b7f28451c0a1a603dc534fe5d9dd3900150114f89386216',
u'RepoTags': [u'busybox:buildroot-2014.02', u'busybox:latest'],
u'Size': 0,
u'VirtualSize': 2433303}]
建立一个容器。 注意我添加一个可以将要运行的命令,这里用的是”env”命令。
In [8]: c.create_container(image="busybox", command="env")
Out[8]:
{u'Id': u'584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87',
u'Warnings': None}
使用ID来启动这个容器
In [9]: c.start(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
我们可以检查日志,应该可以看到当容器创建的时候 ,我们配置的”env”命令的输出。
In [11]: c.logs(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
Out[11]: 'HOME=/\nPATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\nHOSTNAME=584459a09e6d\n'
如果使用docker命令行,使用同样的命令行选项运行一个容器,应该可以看到类似的信息。
$ docker run busybox env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=ce3ad38a52bf
据我所知,docker-py没有运行选项,我们只能创建一个容器然后启动它。
以下是一个案例:
In [17]: busybox = c.create_container(image="busybox", command="echo hi")
In [18]: busybox?
Type: dict
String Form:{u'Id': u'34ede853ee0e95887ea333523d559efae7dcbe6ae7147aa971c544133a72e254', u'Warnings': None}
Length: 2
Docstring:
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
In [19]: c.start(busybox.get("Id"))
In [20]: c.logs(busybox.get("Id"))
Out[20]: 'hi\n'
如果你还没有使用过busybox镜像,我建议你使用下。我也建议debain下的jessie镜像,它只有120MB,比Ubuntu镜像要小。
总结
Docker是一个吸引人的新系统,可以用来建立有趣的新技术应用,特别是云服务相关的。使用IPython我们探索了怎么使用
docker-py模块来创建docker 容器。 现在使用python,我们可以结合docker和容易 创造出很多新的点子。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
