首頁 後端開發 Python教學 在Python中利用Into包整洁地进行数据迁移的教程

在Python中利用Into包整洁地进行数据迁移的教程

Jun 10, 2016 pm 03:16 PM
csv json python 資料遷移

动机

我们花费大量的时间将数据从普通的交换格式(比如CSV),迁移到像数组、数据库或者二进制存储等高效的计算格式。更糟糕的是,许多人没有将数据迁移到高效的格式,因为他们不知道怎么(或者不能)为他们的工具管理特定的迁移方法。

你所选择的数据格式很重要,它会强烈地影响程序性能(经验规律表明会有10倍的差距),以及那些轻易使用和理解你数据的人。

当提倡Blaze项目时,我经常说:“Blaze能帮助你查询各种格式的数据。”这实际上是假设你能够将数据转换成指定的格式。

进入into项目

into函数能在各种数据格式之间高效的迁移数据。这里的数据格式既包括内存中的数据结构,比如:

列表、集合、元组、迭代器、numpy中的ndarray、pandas中的DataFrame、dynd中的array,以及上述各类的流式序列。

也包括存在于Python程序之外的持久化数据,比如:

CSV、JSON、行定界的JSON,以及以上各类的远程版本

HDF5 (标准格式与Pandas格式皆可)、 BColz、 SAS、 SQL 数据库 ( SQLAlchemy支持的皆可)、 Mongo

into项目能在上述数据格式的任意两个格式之间高效的迁移数据,其原理是利用一个成对转换的网络(该文章底部有直观的解释)。

如何使用它

into函数有两个参数:source和target。它将数据从source转换成target。source和target能够使用如下的格式:

Target     Source     Example

Object    Object      A particular DataFrame or list

String     String      ‘file.csv', ‘postgresql://hostname::tablename'

Type                   Like list or pd.DataFrame

所以,下边是对into函数的合法调用:
 

>>> into(list, df) # create new list from Pandas DataFrame
 
>>> into([], df) # append onto existing list
 
>>> into('myfile.json', df) # Dump dataframe to line-delimited JSON
 
>>> into(Iterator, 'myfiles.*.csv') # Stream through many CSV files
 
>>> into('postgresql://hostname::tablename', df) # Migrate dataframe to Postgres
 
>>> into('postgresql://hostname::tablename', 'myfile.*.csv') # Load CSVs to Postgres
 
>>> into('myfile.json', 'postgresql://hostname::tablename') # Dump Postgres to JSON
 
>>> into(pd.DataFrame, 'mongodb://hostname/db::collection') # Dump Mongo to DataFrame
登入後複製

Note that into is a single function. We're used to doing this with various to_csv, from_sql methods on various types. The into api is very small; Here is what you need in order to get started:

注意,into函数是一个单一的函数。虽然我们习惯于在各种类型上使用to_csv, from_sql等方法来完成这样的功能,但接口into非常简单。开始使用into函数前,你需要:

$ pip install into
 
>>> from into import into
登入後複製

在Github上查看into工程。

实例

现在我们展示一些更深层次的相同的实例。

将Python中的list类型转换成numpy中的array类型

>>> import numpy as np
 
>>> into(np.ndarray, [1, 2, 3])
 
array([1, 2, 3])
登入後複製

加载CSV文件,并转换成Python中的list类型

>>> into(list, 'accounts.csv')
 
[(1, 'Alice', 100),
 
(2, 'Bob', 200),
 
(3, 'Charlie', 300),
 
(4, 'Denis', 400),
 
(5, 'Edith', 500)]
登入後複製

将CSV文件转换成JSON格式

>>> into('accounts.json', 'accounts.csv')
 
$ head accounts.json
 
{"balance": 100, "id": 1, "name": "Alice"}
 
{"balance": 200, "id": 2, "name": "Bob"}
 
{"balance": 300, "id": 3, "name": "Charlie"}
 
{"balance": 400, "id": 4, "name": "Denis"}
 
{"balance": 500, "id": 5, "name": "Edith"}
登入後複製

将行定界的JSON格式转换成Pandas中的DataFrame格式

>>> import pandas as pd
 
>>> into(pd.DataFrame, 'accounts.json')
 
balance id name
 
0 100 1 Alice
 
1 200 2 Bob
 
2 300 3 Charlie
 
3 400 4 Denis
 
4 500 5 Edith
登入後複製

它是如何工作的?

格式转换是有挑战性的。任意两个数据格式之间的健壮、高效的格式转换,都充满了特殊情况和奇怪的库。常见的解决方案是通过一个通用格式,例如DataFrame或流内存列表、字典等,进行格式转换。(见dat)或者通过序列化格式,例如ProtoBuf或Thrift,进行格式转换。这些都是很好的选择,往往也是你想要的。然而有时候这样的转换是比较慢的,特别是当你在实时计算系统上转换,或面对苛刻的存储解决方案时。

2015330111948621.jpg (419×390)

考虑一个例子,在numpy.recarray和pandas.DataFrame之间进行数据迁移。我们可以非常快速地,适当地迁移这些数据。数据的字节不需要更改,只更改其周围的元数据即可。我们不需要将数据序列化到一个交换格式,或转换为中间的纯Python对象。

考虑从CSV文件迁移数据到一个PostgreSQL数据库。通过SQLAlchemy(注:一个Python环境下的数据库工具箱)使用Python迭代器,我们的迁移速度不太可能超过每秒2000条记录。然而使用PostgreSQL自带的CSV加载器,我们的迁移速度可以超过每秒50000条记录。花费一整晚的时间和花费一杯咖啡的时间进行数据迁移,是有很大区别的。然而这需要我们在特殊情况下,能足够灵活的使用特殊代码。

专门的两两互换工具往往比通用解决方案快一个数量级。

Into项目是那些成对地数据迁移组成的一个网络。我们利用下图展示这个网络:

2015330112051754.jpg (690×430)

每个节点是一种数据格式。每个定向的边是一个在两种数据格式之间转换数据的函数。into函数的一个调用,可能会遍历多个边和多个中间格式。例如,当我们将CSV文件迁移到Mongo数据库时,我们可以采取以下路径:

?将CSV文件加载到DataFrame中(利用pandas.read_csv)

?然后转换为np.recarray(利用DataFrame.to_records)

?接着转换为一个Python的迭代器类型(利用np.ndarray.tolist)

?最终转换成Mongo中的数据(利用pymongo.Collection.insert)

或者我们可以使用MongoDB自带的CSV加载器,编写一个特殊函数,用一个从CSV到Mongo的定向边缩短整个处理过程。

为了找到最有效的路线,我们利用相对成本(引入权重的ad-hoc)给这个网络的所有边赋予权重值。然后我们使用networkx找到最短路径,进而进行数据迁移。如果某个边由于某种原因失败了(引发NotImplementedError),我们可以自动重新寻找路径。这样我们的迁移方法是既高效又健壮的。

注意,我们给某些节点涂上红色。这些节点的数据量可以大于内存。当我们在两个红色节点之间进行数据迁移时(输入和输出的数据量都可能大于内存),我们限制我们的路径始终在红色子图中,以确保迁移路径中间的数据不会溢出。需要注意的一种格式是chunks(…),例如chunks(DataFrame)是一个可迭代的,在内存中的DataFrames。这个方便的元格式允许我们在大数据上使用紧凑的数据结构,例如numpy的arrays和pandas的DataFrames,同时保持在内存中数据的只有几十兆字节。

这种网络化的方法允许开发者对于特殊情况编写专门的代码,同时确信这段代码只在正确的情况下使用。这种方法允许我们利用一个独立的、可分离的方式处理一个非常复杂的问题。中央调度系统让我们保持头脑清醒。

历史

很久以前,我写过into链接到Blaze的文章,然后我立即就沉默了。这是因为旧的实现方法(网络方法之前)很难扩展或维护,也没有准备好进入其黄金期。

我很满意这个网络。意想不到的应用程序经常能够正常运行,into工程现在也准备好进入其黄金期了。Into工程可以通过conda和pip得到,而独立于Blaze。它主要的依赖为NumPy、Pandas和NetworkX,所以对于阅读我博客的大部分人来说,它算是相对轻量级的。如果你想利用一些性能更好的格式,例如HDF5,你将同样需要安装这些库(pro-tip,使用conda安装)。

如何开始使用into函数

你应该下载一个最近版本的into工程。

$ pip install --upgrade git+https://github.com/ContinuumIO/into
 
or
 
$ conda install into --channel blaze
登入後複製

然后你可能想要通过该教程的上半部分,或者阅读该文档。

又或者不阅读任何东西,只是试一试。我的希望是,这个接口很简单(只有一个函数!),用户可以自然地使用它。如果你运行中出现了问题,那么我很愿意在blaze-dev@continuum.io中听到它们。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles