首頁 後端開發 Python教學 Python获取单个程序CPU使用情况趋势图

Python获取单个程序CPU使用情况趋势图

Jun 10, 2016 pm 03:17 PM
python

本文定位:已将CPU历史数据存盘,等待可视化进行分析,可暂时没有思路。
前面一篇文章(http://www.jb51.net/article/61956.htm)提到过在linux下如何用python将top命令的结果进行存盘,本文是它的后续。

python中我们可以用matplotlib很方便的将数据可视化,比如下面的代码:

复制代码 代码如下:

import matplotlib.pyplot as plt

list1 = [1,2,3]
list2 = [4,5,9]
plt.plot(list1,list2)
plt.show()

执行效果如下:

上面只是给plot函数传了两个list数据结构,show一下图形就出来了……哈哈,很方便吧!
获取CPU趋势图就用这个了!
可我们现在得到的数据没那么友好,比如我现在有个文件(file.txt),内容如下:

复制代码 代码如下:

Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 7.7%us, 7.7%sy, 0.0%ni, 76.9%id, 0.0%wa, 0.0%hi, 7.7%si, 0.0%st
Cpu(s): 0.0%us, 9.1%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 9.1%us, 0.0%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 8.3%us, 8.3%sy, 0.0%ni, 83.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 9.1%sy, 0.0%ni, 90.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

其中,第一列为时间,第六列为CPU的idle值。

要从这组数据中得出CPU使用情况趋势图,我们就要做些工作了。

下面是代码,这里提供一个思路,需要的朋友拷回去改一下吧:

复制代码 代码如下:

#coding:utf-8
'''
      File      : cpuUsage.py
      Author    : Mike
      E-Mail    : Mike_Zhang@live.com
'''
import matplotlib.pyplot as plt
import string

def getCpuInfData(fileName):
    ret = {}
    f = open(fileName,"r")
    lineList = f.readlines()
    for line in lineList:
        tmp = line.split()
        sz = len(tmp)
        t_key = string.atoi(tmp[0]) # 得到key
        t_value = 100.001-string.atof(line.split(':')[1].split(',')[3].split('%')[0]) # 得到value
        print t_key,t_value   
        if not ret.has_key(t_key) :
            ret[t_key] = []
        ret[t_key].append(t_value)
    f.close()
    return ret
   
retMap1 = getCpuInfData("file.txt")
# 生成CPU使用情况趋势图
list1 = retMap1.keys()
list1.sort()
list2 = []
for i in list1:list2.append(retMap1[i])
plt.plot(list1,list2)
plt.show()

好,就这些了,希望对你有帮助。

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles