浅谈大型web系统架构,web系统架构
浅谈大型web系统架构,web系统架构
动态应用,是相对于网站静态内容而言,是指以c/c++、php、Java、perl、.net等服务器端语言开发的网络应用软件,比如论坛、网络相册、交友、BLOG等常见应用。动态应用系统通常与数据库系统、缓存系统、分布式存储系统等密不可分。
大型动态应用系统平台主要是针对于大流量、高并发网站建立的底层系统架构。大型网站的运行需要一个可靠、安全、可扩展、易维护的应用系统平台做为支撑,以保证网站应用的平稳运行。
大型动态应用系统又可分为几个子系统:
1)Web前端系统
2)负载均衡系统
3)数据库集群系统
4)缓存系统
5)分布式存储系统
6)分布式服务器管理系统
7)代码分发系统
Web前端系统
结构图:
为了达到不同应用的服务器共享、避免单点故障、集中管理、统一配置等目的,不以应用划分服务器,而是将所有服务器做统一使用,每台服务器都可以对多个应用提供服务,当某些应用访问量升高时,通过增加服务器节点达到整个服务器集群的性能提高,同时使他应用也会受益。该Web前端系统基于Apache/Lighttpd/Eginx等的虚拟主机平台,提供PHP程序运行环境。服务器对开发人员是透明的,不需要开发人员介入服务器管理
负载均衡系统
负载均衡系统分为硬件和软件两种。硬件负载均衡效率高,但是价格贵,比如F5等。软件负载均衡系统价格较低或者免费,效率较硬件负载均衡系统低,不过对于流量一般或稍大些网站来讲也足够使用,比如lvs, nginx。大多数网站都是硬件、软件负载均衡系统并用。
数据库集群系统
结构图:
由于Web前端采用了负载均衡集群结构提高了服务的有效性和扩展性,因此数据库必须也是高可靠的,才能保证整个服务体系的高可靠性,如何构建一个高可靠的、可以提供大规模并发处理的数据库体系?
我们可以采用如上图所示的方案:
1) 使用 MySQL 数据库,考虑到Web应用的数据库读多写少的特点,我们主要对读数据库做了优化,提供专用的读数据库和写数据库,在应用程序中实现读操作和写操作分别访问不同的数据库。
2) 使用 MySQL Replication 机制实现快速将主库(写库)的数据库复制到从库(读库)。一个主库对应多个从库,主库数据实时同步到从库。饺子机www.yjlmj.com 整理发布
3) 写数据库有多台,每台都可以提供多个应用共同使用,这样可以解决写库的性能瓶颈问题和单点故障问题。
4) 读数据库有多台,通过负载均衡设备实现负载均衡,从而达到读数据库的高性能、高可靠和高可扩展性。
5) 数据库服务器和应用服务器分离。
6) 从数据库使用BigIP做负载均衡。
缓存系统
缓存分为文件缓存、内存缓存、数据库缓存。在大型Web应用中使用最多且效率最高的是内存缓存。最常用的内存缓存工具是Memcached。使用正确的缓存系统可以达到实现以下目标:
1、使用缓存系统可以提高访问效率,提高服务器吞吐能力,改善用户体验。
2、减轻对数据库及存储集服务器的访问压力。
3、Memcached服务器有多台,避免单点故障,提供高可靠性和可扩展性,提高性能。
分布式存储系统
结构图:
Web系统平台中的存储需求有下面两个特点:
1) 存储量很大,经常会达到单台服务器无法提供的规模,比如相册、视频等应用。因此需要专业的大规模存储系统。
2) 负载均衡cluster中的每个节点都有可能访问任何一个数据对象,每个节点对数据的处理也能被其他节点共享,因此这些节点要操作的数据从逻辑上看只能是一个整体,不是各自独立的数据资源。
因此高性能的分布式存储系统对于大型网站应用来说是非常重要的一环。(这个地方需要加入对某个分布式存储系统的简单介绍。)
分布式服务器管理系统
结构图:
随着网站访问流量的不断增加,大多的网络服务都是以负载均衡集群的方式对外提供服务,随之集群规模的扩大,原来基于单机的服务器管理模式已经不能够满足我们的需求,新的需求必须能够集中式的、分组的、批量的、自动化的对服务器进行管理,能够批量化的执行计划任务。
在分布式服务器管理系统软件中有一些比较优秀的软件,其中比较理想的一个是Cfengine。它可以对服务器进行分组,不同的分组可以分别定制系统配置文件、计划任务等配置。它是基于C/S 结构的,所有的服务器配置和管理脚本程序都保存在Cfengine Server上,而被管理的服务器运行着 Cfengine Client 程序,Cfengine Client通过SSL加密的连接定期的向服务器端发送请求以获取最新的配置文件和管理命令、脚本程序、补丁安装等任务。
有了Cfengine这种集中式的服务器管理工具,我们就可以高效的实现大规模的服务器集群管理,被管理服务器和 Cfengine Server 可以分布在任何位置,只要网络可以连通就能实现快速自动化的管理。
代码发布系统
结构图:
随着网站访问流量的不断增加,大多的网络服务都是以负载均衡集群的方式对外提供服务,随之集群规模的扩大,为了满足集群环境下程序代码的批量分发和更新,我们还需要一个程序代码发布系统。
这个发布系统可以帮我们实现下面的目标:
1) 生产环境的服务器以虚拟主机方式提供服务,不需要开发人员介入维护和直接操作,提供发布系统可以实现不需要登陆服务器就能把程序分发到目标服务器。
2) 我们要实现内部开发、内部测试、生产环境测试、生产环境发布的4个开发阶段的管理,发布系统可以介入各个阶段的代码发布。
3) 我们需要实现源代码管理和版本控制,SVN可以实现该需求。
这里面可以使用常用的工具Rsync,通过开发相应的脚本工具实现服务器集群间代码同步分发。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

深度學習的概念源自於人工神經網路的研究,含有多個隱藏層的多層感知器是一種深度學習結構。深度學習透過組合低層特徵形成更抽象的高層表示,以表徵資料的類別或特徵。它能夠發現資料的分佈式特徵表示。深度學習是機器學習的一種,而機器學習是實現人工智慧的必經之路。那麼,各種深度學習的系統架構之間有哪些差異呢? 1.全連接網路(FCN)完全連接網路(FCN)由一系列完全連接的層組成,每個層中的每個神經元都連接到另一層中的每個神經元。其主要優點是“結構不可知”,即不需要對輸入做出特殊的假設。雖然這種結構不可知使得完

论文地址:https://arxiv.org/abs/2307.09283代码地址:https://github.com/THU-MIG/RepViTRepViT在移动端ViT架构中表现出色,展现出显著的优势。接下来,我们将探讨本研究的贡献所在。文中提到,轻量级ViTs通常比轻量级CNNs在视觉任务上表现得更好,这主要归功于它们的多头自注意力模块(MSHA)可以让模型学习全局表示。然而,轻量级ViTs和轻量级CNNs之间的架构差异尚未得到充分研究。在这项研究中,作者们通过整合轻量级ViTs的有效

SpringDataJPA基於JPA架構,透過映射、ORM和事務管理與資料庫互動。其儲存庫提供CRUD操作,派生查詢簡化了資料庫存取。此外,它使用延遲加載,僅在必要時檢索數據,從而提高了效能。

面向視覺任務(如影像分類)的深度學習模型,通常使用單一視覺域(如自然影像或電腦生成的影像)的資料進行端到端的訓練。一般情況下,一個為多個領域完成視覺任務的應用程式需要為每個單獨的領域建立多個模型,分別獨立訓練,不同領域之間不共享數據,在推理時,每個模型將處理特定領域的輸入資料。即使是面向不同領域,這些模型之間的早期層的有些特徵都是相似的,所以,對這些模型進行聯合訓練的效率更高。這能減少延遲和功耗,降低儲存每個模型參數的記憶體成本,這種方法稱為多領域學習(MDL)。此外,MDL模型也可以優於單

前段時間,一則指出Google大腦團隊論文《AttentionIsAllYouNeed》中Transformer架構圖與程式碼不一致的推文引發了大量的討論。對於Sebastian的這項發現,有人認為屬於無心之過,但同時也會令人感到奇怪。畢竟,考慮到Transformer論文的流行程度,這個不一致問題早就該被提及1000次。 SebastianRaschka在回答網友評論時說,「最最原始」的程式碼確實與架構圖一致,但2017年提交的程式碼版本進行了修改,但同時沒有更新架構圖。這也是造成「不一致」討論的根本原因。

人工智慧(AI)已經改變了許多行業的遊戲規則,使企業能夠提高效率、決策和客戶體驗。隨著人工智慧的不斷發展和變得越來越複雜,企業投資於合適的基礎設施來支援其開發和部署至關重要。這個基礎設施的一個關鍵方面是IT和數據科學團隊之間的協作,因為兩者在確保人工智慧計畫的成功方面都發揮著關鍵作用。人工智慧的快速發展導致對運算能力、儲存和網路能力的需求不斷增加。這種需求為傳統IT基礎架構帶來了壓力,而傳統IT基礎架構並非設計用於處理AI所需的複雜和資源密集型工作負載。因此,企業現在正在尋求建構能夠支持AI工作負

eslint 使用eslint的生態鏈來規範開發者對js/ts基本語法的規格。防止團隊的成員亂寫. 這裡主要使用到的eslint的套件有以下幾個: 使用的以下語句來按照依賴: 接下來需要對eslint的

一、Llama3的架構在本系列文章中,我們從頭開始實作llama3。 Llama3的整體架構:圖片Llama3的模型參數:讓我們來看看這些參數在LlaMa3模型中的實際數值。圖片[1]上下文視窗(context-window)在實例化LlaMa類別時,變數max_seq_len定義了context-window。類別中還有其他參數,但這個參數與transformer模型的關係最為直接。這裡的max_seq_len是8K。圖片[2]字彙量(Vocabulary-size)和注意力層(AttentionL
