PDO支持数据缓存
/**
* 作者:初十
* QQ:345610000
*/
class myPDO extends PDO
{
public $cache_Dir = null; //缓存目录
public $cache_expireTime = 7200; //缓存时间,默认两小时
//带缓存的查询
public function cquery($sql)
{
//缓存存放总目录
if ($this->cache_Dir == null || !is_dir($this->cache_Dir)) {
exit ("缓存目录有误!");
} else {
$this->cache_Dir = str_replace("\", "/", $this->cache_Dir);
$FileName = trim($this->cache_Dir, "/") . '/' . urlencode(trim($sql)) . '.sql';
}
//判断生成缓存
if (!file_exists($FileName) || time() - filemtime($FileName) > $this->cache_expireTime) {
if ($tmpRS = parent::query($sql)) {
$data = serialize($tmpRS->fetchAll());
self::createFile($FileName, $data);
} else {
exit ("SQL语法错误
");
}
}
return $this->readCache($FileName);
}
//读缓存文件
private static function readCache($FilePath)
{
if (is_file($FilePath) && $Data = file_get_contents($FilePath)) {
return new cache_PDOStatement(unserialize($Data));
}
return false;
}
//生成文件
public static function createFile($FilePath, $Data = '')
{
if (file_put_contents($FilePath, $Data)) {
return true;
} else {
return false;
}
}
}
//缓存用到Statement类
class cache_PDOStatement
{
private $recordArr = array();
private $cursorId = 0;
private $recordCount = 0;
public function __construct($arr)
{
$this->recordArr = $arr;
$this->recordCount = count($arr);
}
//返回一条记录,指针下移一行
public function fetch()
{
if ($this->cursorId == $this->recordCount) {
return false;
} else if ($this->cursorId == 0) {
$this->cursorId++;
return current($this->recordArr);
} else {
$this->cursorId++;
return next($this->recordArr);
}
}
//返回全部结果
public function fetchAll()
{
return $this->recordArr;
}
//单行单列查询
public function fetchColumn()
{
$tmpArr = current($this->recordArr);
return $tmpArr[0];
}
}
使用方法
$db = new myPDO('mysql: host = localhost;dbname=news','newsadmin','123456');
$db->cache_Dir = "cache"; //设置缓存目录
$db->cache_expireTime = 7200; //设置缓存时间
$rs = $db->cquery("select * from news limit 0,10"); //用缓存查询方法cquery代替query
while ($row = $rs->fetch()) {
echo $row["F_title"] . "
";
}
$rs = null;
$db = null;

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

多模態文件理解能力新SOTA!阿里mPLUG團隊發布最新開源工作mPLUG-DocOwl1.5,針對高解析度圖片文字辨識、通用文件結構理解、指令遵循、外部知識引入四大挑戰,提出了一系列解決方案。話不多說,先來看效果。複雜結構的圖表一鍵識別轉換為Markdown格式:不同樣式的圖表都可以:更細節的文字識別和定位也能輕鬆搞定:還能對文檔理解給出詳細解釋:要知道,“文檔理解”目前是大語言模型實現落地的一個重要場景,市面上有許多輔助文檔閱讀的產品,有的主要透過OCR系統進行文字識別,配合LLM進行文字理

最近,軍事圈被這個消息刷屏了:美軍的戰鬥機,已經能由AI完成全自動空戰了。是的,就在最近,美軍的AI戰鬥機首次公開,揭開了神秘面紗。這架戰鬥機的全名是可變穩定性飛行模擬器測試飛機(VISTA),由美空軍部長親自搭乘,模擬了一對一的空戰。 5月2日,美國空軍部長FrankKendall在Edwards空軍基地駕駛X-62AVISTA升空注意,在一小時的飛行中,所有飛行動作都由AI自主完成! Kendall表示——在過去的幾十年中,我們一直在思考自主空對空作戰的無限潛力,但它始終顯得遙不可及。然而如今,

FP8和更低的浮點數量化精度,不再是H100的「專利」了!老黃想讓大家用INT8/INT4,微軟DeepSpeed團隊在沒有英偉達官方支援的條件下,硬生在A100上跑起FP6。測試結果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶爾超過INT4,而且比後者擁有更高的精度。在此基礎之上,還有端到端的大模型支持,目前已經開源並整合到了DeepSpeed等深度學習推理框架中。這項成果對大模型的加速效果也是立竿見影──在這種框架下用單卡跑Llama,吞吐量比雙卡還要高2.65倍。一名
