首頁 科技週邊 人工智慧 吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

Jun 19, 2024 pm 08:58 PM
入門 情境學習 ManyICL

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明:利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

  • 论文地址:https://arxiv.org/abs/2405.09798
  • 代码地址:https://github.com/stanfordmlgroup/ManyICL

背景介绍

在近期的多模态基础模型(Multimodal Foundation Model)研究中,上下文学习(In-Context Learning, ICL)已被证明是提高模型性能的有效方法之一。

然而,受限于基础模型的上下文长度,尤其是对于需要大量视觉 token 来表示图片的多模态基础模型,已有的相关研究只局限于在上下文中提供少量样本。

令人激动的是,最新的技术进步大大增加了模型的上下文长度,这为探索使用更多示例进行上下文学习提供了可能性。

基于此,斯坦福吴恩达团队的最新研究——ManyICL,主要评估了目前最先进的多模态基础模型在从少样本 (少于 100) 到多样本(最高至 2000)上下文学习中的表现。通过对多个领域和任务的数据集进行测试,团队验证了多样本上下文学习在提高模型性能方面的显著效果,并探讨了批量查询对性能和成本及延迟的影响。
吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務
                           Many-shot ICL与零样本、少样本ICL的比较。

方法概览

本研究选择了三种先进的多模态基础模型:GPT-4o、GPT4 (V)-Turbo 和 Gemini 1.5 Pro。出于 GPT-4o 优越的表现,研究团队在正文中着重讨论 GPT-4o 和 Gemini 1.5 Pro, GPT4 (V)-Turbo 的相关内容请于附录中查看。

数据集方面,研究团队在 10 个跨越不同领域(包括自然影像、医学影像、遥感影像和分子影像等)和任务(包括多分类、多标签分类和细粒度分类)的数据集上进行了广泛的实验。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

                                             基准数据集汇总。

為了測試增加範例數量對模型效能的影響,研究團隊逐步增加了上下文中提供的範例數量,最高達到近 2000 個範例。同時,考慮到多樣本學習的高成本和高延遲,研究團隊也探索了批量處理查詢的影響。在這裡,批次查詢指的是在單次 API 呼叫中處理多個查詢。

實驗結果

#多樣本上下文學習效能評估

整體表現:包含近2000 個範例的多樣本情境學習在所有資料集上均優於少樣本學習。隨著範例數量的增加,Gemini 1.5 Pro 模型的效能呈現持續的對數線性提升,而 GPT-4o 的表現較不穩定。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

資料效率:研究測量了模型的上下文學習資料效率,即模型從範例中學習的速度。結果表明,Gemini 1.5 Pro 在絕大部分資料集上顯示出比 GPT-4o 更高的上下文學習資料效率,這意味著它能夠更有效地從範例中學習。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

批次查詢的影響

總體表現:在選擇最優範例集大小下的零樣本和多樣本情境中,將多個查詢合併為一次請求,不會降低效能。值得注意的是,在零樣本場景中,單一查詢在許多資料集上表現較差。相比之下,批量查詢甚至可以提高效能。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

零樣本場景下的效能提升:對於某些資料集(如UCMerced),批次查詢在零樣本場景下顯著提高了效能。研究團隊分析認為,這主要歸因於領域校準 (domain calibration)、類別校準 (class calibration) 以及自我學習 (self-ICL)。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

成本與延遲分析

#多樣本上下文學習雖然在推理時需要處理更長的輸入上下文,但透過批次查詢可以顯著降低每個範例的延遲和推理成本。例如,在 HAM10000 資料集中,使用 Gemini 1.5 Pro 模型進行 350 個範例的批次查詢,延遲從 17.3 秒降至 0.54 秒,成本從每個範例 0.842 美元降至 0.0877 美元。

吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務

結論

#研究結果表明,多樣本上下文學習能夠顯著提高多模態基礎模型的表現,尤其是Gemini 1.5 Pro 模型在多個資料集上表現出持續的效能提升,使其能夠更有效地適應新任務和新領域,而無需傳統的微調。

其次,批次處理查詢可以在相似甚至更好的模型表現的同時,降低推理成本和延遲,顯示出在實際應用中的巨大潛力。

總的來說,吳恩達團隊的研究為多模態基礎模型的應用開闢了新的路徑,特別是在快速適應新任務和領域方面。

以上是吳恩達團隊新作:多模態多樣本情境學習,無需微調快速適應新任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
<🎜>掩蓋:探險33-如何獲得完美的色度催化劑
2 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1677
14
CakePHP 教程
1430
52
Laravel 教程
1333
25
PHP教程
1278
29
C# 教程
1257
24
一鍵生成PPT! Kimi :讓「PPT民工」先浪起來 一鍵生成PPT! Kimi :讓「PPT民工」先浪起來 Aug 01, 2024 pm 03:28 PM

Kimi:一句話,十幾秒鐘,一份PPT就新鮮出爐了。 PPT這玩意兒,可太招人煩了!開個碰頭會,要有PPT;寫個週報,要做PPT;拉個投資,要展示PPT;就連控訴出軌,都得發個PPT。大學比較像是學了個PPT專業,上課看PPT,下課做PPT。或許,37年前丹尼斯・奧斯汀發明PPT時也沒想到,有一天PPT竟然如此氾濫成災。嗎嘍們做PPT的苦逼經歷,說起來都是淚。 「一份二十多頁的PPT花了三個月,改了幾十遍,看到PPT都想吐」;「最巔峰的時候,一天做了五個PPT,連呼吸都是PPT」;「臨時開個會,都要做個

值得你花時間看的擴散模型教程,來自普渡大學 值得你花時間看的擴散模型教程,來自普渡大學 Apr 07, 2024 am 09:01 AM

Diffusion不僅可以更好地模仿,而且可以進行「創作」。擴散模型(DiffusionModel)是一種影像生成模型。與先前AI領域大名鼎鼎的GAN、VAE等演算法,擴散模型另闢蹊徑,其主要想法是先對影像增加噪聲,再逐步去噪的過程。其中如何去噪還原原影像是演算法的核心部分。最終演算法能夠從一張隨機的雜訊影像中產生影像。近年來,生成式AI的驚人成長將文字轉換為圖像生成、視訊生成等領域的許多令人興奮的應用提供了支援。這些生成工具背後的基本原理是擴散的概念,這是一種特殊的取樣機制,克服了先前的方法中被

CVPR 2024全部獎項公佈!近萬人線下參會,Google華人研究員獲最佳論文獎 CVPR 2024全部獎項公佈!近萬人線下參會,Google華人研究員獲最佳論文獎 Jun 20, 2024 pm 05:43 PM

北京時間6月20日凌晨,在西雅圖舉辦的國際電腦視覺頂會CVPR2024正式公佈了最佳論文等獎項。今年共有10篇論文獲獎,其中2篇最佳論文,2篇最佳學生論文,另外還有2篇最佳論文提名和4篇最佳學生論文提名。電腦視覺(CV)領域的頂級會議是CVPR,每年都會吸引大量研究機構和高校參會。根據統計,今年共提交了11532份論文,2719篇被接收,錄取率為23.6%。根據佐治亞理工學院對CVPR2024的數據統計分析,從研究主題來看,論文數量最多的是圖像和視頻合成與生成(Imageandvideosyn

從裸機到700億參數大模型,這裡有一個教程,還有現成可用的腳本 從裸機到700億參數大模型,這裡有一個教程,還有現成可用的腳本 Jul 24, 2024 pm 08:13 PM

我們知道LLM是在大規模電腦叢集上使用海量資料訓練得到的,本站曾介紹過不少用於輔助和改進LLM訓練流程的方法和技術。而今天,我們要分享的是一篇深入技術底層的文章,介紹如何將一堆連作業系統也沒有的「裸機」變成用來訓練LLM的電腦叢集。這篇文章來自於AI新創公司Imbue,該公司致力於透過理解機器的思維方式來實現通用智慧。當然,將一堆連作業系統也沒有的「裸機」變成用於訓練LLM的電腦叢集並不是一個輕鬆的過程,充滿了探索和試錯,但Imbue最終成功訓練了一個700億參數的LLM,並在此過程中積累

PyCharm社群版安裝指南:快速掌握全部步驟 PyCharm社群版安裝指南:快速掌握全部步驟 Jan 27, 2024 am 09:10 AM

快速入門PyCharm社群版:詳細安裝教學全解析導言:PyCharm是一個功能強大的Python整合開發環境(IDE),它提供了一套全面的工具,可以幫助開發人員更有效率地編寫Python程式碼。本文將詳細介紹如何安裝PyCharm社群版,並提供具體的程式碼範例,幫助初學者快速入門。第一步:下載和安裝PyCharm社群版要使用PyCharm,首先需要從其官方網站上下

AI在用 | AI製作獨居女孩生活Vlog,3天狂攬萬點讚量 AI在用 | AI製作獨居女孩生活Vlog,3天狂攬萬點讚量 Aug 07, 2024 pm 10:53 PM

機器之能報道編輯:楊文以大模型、AIGC為代表的人工智慧浪潮已經在悄悄改變我們生活及工作方式,但絕大部分人依然不知道該如何使用。因此,我們推出了「AI在用」專欄,透過直覺、有趣且簡潔的人工智慧使用案例,來具體介紹AI使用方法,並激發大家思考。我們也歡迎讀者投稿親自實踐的創新用例。影片連結:https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ最近,獨居女孩的生活Vlog在小紅書上走紅。一個插畫風格的動畫,再配上幾句治癒系文案,短短幾天就能輕鬆狂攬上

技術入門者必看:C語言和Python難易度解析 技術入門者必看:C語言和Python難易度解析 Mar 22, 2024 am 10:21 AM

標題:技術入門者必看:C語言和Python難易度解析,需要具體程式碼範例在當今數位化時代,程式設計技術已成為一項越來越重要的能力。無論是想要從事軟體開發、數據分析、人工智慧等領域,還是僅僅出於興趣學習編程,選擇一門合適的程式語言是第一步。而在眾多程式語言中,C語言和Python作為兩種廣泛應用的程式語言,各有其特色。本文將對C語言和Python的難易度進行解析

細數RAG的12個痛點,英偉達高級架構師親授解決方案 細數RAG的12個痛點,英偉達高級架構師親授解決方案 Jul 11, 2024 pm 01:53 PM

檢索增強式產生(RAG)是一種使用檢索提升語言模型的技術。具體來說,就是在語言模型生成答案之前,先從廣泛的文檔資料庫中檢索相關信息,然後利用這些信息來引導生成過程。這種技術能大幅提升內容的準確性和相關性,並能有效緩解幻覺問題,提高知識更新的速度,並增強內容生成的可追溯性。 RAG無疑是最令人興奮的人工智慧研究領域之一。有關RAG的更多詳情請參閱本站專欄文章《專補大模型短板的RAG有哪些新進展?這篇綜述講明白了》。但RAG也並非完美,使用者在使用時也常會遭遇一些「痛點」。近日,英偉達生成式AI高階解決

See all articles