AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
這篇文章的作者團隊來自於哈工大社會計算與資訊檢索研究中心,作者團隊構成:鄭子王、小囌、小娼與資訊檢索研究中心,作者團隊構成:鄭子王、小娼、大智王吉、劉銘、王仲遠、秦兵。 多模態命名實體識別,作為構建多模態知識圖譜的一項基礎而關鍵任務,要求研究者整合多種模態資訊以精準地從文本中提取命名實體。儘管過去的研究已經在不同層次上探索了多模態表示的整合方法,但在將這些多模態表示融合以提供豐富上下文資訊、進而提升多模態命名實體識別的性能方面,它們仍顯不足。 本文,研究團隊提出了DPE-MNER,一個創新的迭代推理框架,它遵循「分解、優先、消除」的策略,動態地整合了多樣化的多模態表示。該框架巧妙地將多模態表示的融合分解為層次化且相互連接的融合層,大大簡化了處理過程。在整合多模態資訊時,團隊特別強調了從「簡單到複雜」和「宏觀到微觀」的漸進式過渡。此外,透過明確地建模跨模態的相關性,研究團隊有效地排除了那些可能對MNER預測造成誤導的不相關資訊。透過在兩個公共資料集上進行的廣泛實驗,研究團隊的方法已被證實在提升多模態命名實體識別的準確性和效率方面具有顯著效果。本文為LREC-COLING 2024 1558篇錄用論文中的十篇最佳論文候選之一。
以上是哈工大提出創新迭代推理架構 DPE-MNER :充分發揮多模態表示潛力的詳細內容。更多資訊請關注PHP中文網其他相關文章!