首頁 > 後端開發 > Golang > 案例(二)-KisFlow-Golang流即時計算-流並行運算

案例(二)-KisFlow-Golang流即時計算-流並行運算

PHPz
發布: 2024-07-16 17:28:10
原創
821 人瀏覽過

Case (II) - KisFlow-Golang Stream Real-Time Computing - Flow Parallel Operation

Github:https://github.com/aceld/kis-flow
文件:https://github.com/aceld/kis-flow/wiki


第 1 部分-概覽
Part2.1-專案建置/基礎模組
Part2.2-專案建置/基礎模組
第三部分-資料流
Part4-功能調度
第5部-連接器
Part6-配置導入導出
Part7-KisFlow 動作
Part8-Cache/Params 資料快取和資料參數
Part9-流程多份
Part10-Prometheus Metrics 統計量
Part11-基於反射的FaaS參數類型自適應註冊


案例1-快速入門
Case2-Flow並行操作
Case3-KisFlow在多Goroutine中的應用
案例4-訊息佇列(MQ)應用中的KisFlow


下載 KisFlow 原始碼

$go get github.com/aceld/kis-flow
登入後複製

KisFlow 開發者文件

原始碼範例

https://github.com/aceld/kis-flow-usage/tree/main/8-connector

KisFlow 可以透過 Connector 實現兩個流的組合

結合以下兩個流程,本介紹將涵蓋 Connector 的介面和使用方法。

數據流程圖

Flow Diagram

案例介紹

假設一個學生有四個屬性:

Student ID: stu_id
Credit 1: score_1
Credit 2: score_2
Credit 3: score_3
登入後複製

定義 Flow1:CalStuAvgScore-1-2,計算學生學分 1 (score_1) 與學分 2 (score_2) 的平均分數 (avg_score_1_2)。
定義 Flow2:CalStuAvgScore-3,計算學生的學分 3 的平均分數 (score_3) 和 avg_score_1_2,即學分 1、學分 2 和學分 3 的平均值。學分 1 和學分 2 的平均值由 Flow1 提供。

流程1

Flow1 由 4 個函數組成:

V(函數:VerifyStu)驗證StuId的有效性
C(函數:AvgStuScore12)計算學分1和學分2的平均分數
S(函數:SaveScoreAvg12)將 avg_score_1_2 儲存在 Redis
E(函數:PrintStuAvgScore)列印學分1和學分2的平均分數。

流程2

Flow2 由 4 個函數組成:

V(函數:VerifyStu)驗證StuId的有效性
L(函數:LoadScoreAvg12)讀取Flow1計算出的目前學生學分1和學分2的平均分數(avg_score_1_2)
C(函數:AvgStuScore3)計算學分3的平均分數以及學分1和學分2的平均分數
E(函數:PrintStuAvgScore)列印學分1、學分2、學分3的平均分數。

conf/func/func-AvgStuScore-3.yml

kistype: func
fname: AvgStuScore3
fmode: Calculate
source:
    name: SourceStuScore
    must:
        - stu_id
登入後複製

conf/func/func-LoadScoreAvg-1-2.yml

kistype: func
fname: LoadScoreAvg12
fmode: Load
source:
    name: SourceStuScore
    must:
        - stu_id
option:
    cname: Score12Cache
登入後複製

基本數據協議

stu_proto.go

package main

type StuScore1_2 struct {
    StuId  int `json:"stu_id"`
    Score1 int `json:"score_1"`
    Score2 int `json:"score_2"`
}

type StuScoreAvg struct {
    StuId    int     `json:"stu_id"`
    AvgScore float64 `json:"avg_score"`
}

type StuScore3 struct {
    StuId      int     `json:"stu_id"`
    AvgScore12 float64 `json:"avg_score_1_2"` // score_1, score_2 avg
    Score3     int     `json:"score_3"`
}

登入後複製

連接器初始化

本專案中定義的Connector Score12Cache是​​與Redis關聯的連結資源。此連接器需要一個初始化方法,用於在 KisFlow 啟動時建立連線。

conn_init.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/log"
    "github.com/go-redis/redis/v8"
)

// type ConnInit func(conn Connector) error

func InitScore12Cache(connector kis.Connector) error {
    fmt.Println("===> Call Connector InitScore12Cache")

    // init Redis Conn Client
    rdb := redis.NewClient(&redis.Options{
        Addr:     connector.GetConfig().AddrString, // Redis-Server address
        Password: "",                               // password
        DB:       0,                                // select db
    })

    // Ping test
    pong, err := rdb.Ping(context.Background()).Result()
    if err != nil {
        log.Logger().ErrorF("Failed to connect to Redis: %v", err)
        return err
    }
    fmt.Println("Connected to Redis:", pong)

    // set rdb to connector
    connector.SetMetaData("rdb", rdb)

    return nil
}
登入後複製

這裡,成功連線的Redis實例儲存在連接器的快取變數「rdb」中。

    // set rdb to connector
    connector.SetMetaData("rdb", rdb)
登入後複製

FaaS 實施

功能(五):VerifyStu

faas_stu_verify.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
)

type VerifyStuIn struct {
    serialize.DefaultSerialize
    StuId int `json:"stu_id"`
}

func VerifyStu(ctx context.Context, flow kis.Flow, rows []*VerifyStuIn) error {
    fmt.Printf("->Call Func VerifyStu\n")

    for _, stu := range rows {
        // Filter out invalid data
        if stu.StuId < 0 || stu.StuId > 999 {
            // Terminate the current Flow process, subsequent functions of the current Flow will not be executed
            return flow.Next(kis.ActionAbort)
        }
    }

    return flow.Next(kis.ActionDataReuse)
}

登入後複製

VerifyStu() 用於驗證資料。如果資料不符合要求,則終止目前資料流。最後,資料被重複使用,透過flow.Next(kis.ActionDataReuse)傳遞到下一層。

函數(C):AvgStuScore12

faas_avg_score_1_2.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
)

type AvgStuScoreIn_1_2 struct {
    serialize.DefaultSerialize
    StuScore1_2
}

type AvgStuScoreOut_1_2 struct {
    serialize.DefaultSerialize
    StuScoreAvg
}

func AvgStuScore12(ctx context.Context, flow kis.Flow, rows []*AvgStuScoreIn_1_2) error {
    fmt.Printf("->Call Func AvgStuScore12\n")

    for _, row := range rows {

        out := AvgStuScoreOut_1_2{
            StuScoreAvg: StuScoreAvg{
                StuId:    row.StuId,
                AvgScore: float64(row.Score1+row.Score2) / 2,
            },
        }

        // Submit result data
        _ = flow.CommitRow(out)
    }

    return flow.Next()
}

登入後複製

AvgStuScore12() 計算score_1 和score_2 的平均分數,得到avg_score。

函數(S):儲存ScoreAvg12

faas_save_score_avg_1_2.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
    "github.com/go-redis/redis/v8"
    "strconv"
)

type SaveStuScoreIn struct {
    serialize.DefaultSerialize
    StuScoreAvg
}

func BatchSetStuScores(ctx context.Context, conn kis.Connector, rows []*SaveStuScoreIn) error {

    var rdb *redis.Client

    // Get Redis Client
    rdb = conn.GetMetaData("rdb").(*redis.Client)

    // Set data to redis
    pipe := rdb.Pipeline()

    for _, score := range rows {
        // make key
        key := conn.GetConfig().Key + strconv.Itoa(score.StuId)

        pipe.HMSet(context.Background(), key, map[string]interface{}{
            "avg_score": score.AvgScore,
        })
    }

    _, err := pipe.Exec(ctx)
    if err != nil {
        return err
    }

    return nil
}

func SaveScoreAvg12(ctx context.Context, flow kis.Flow, rows []*SaveStuScoreIn) error {
    fmt.Printf("->Call Func SaveScoreAvg12\n")

    conn, err := flow.GetConnector()
    if err != nil {
        fmt.Printf("SaveScoreAvg12(): GetConnector err = %s\n", err.Error())
        return err
    }

    if BatchSetStuScores(ctx, conn, rows) != nil {
        fmt.Printf("SaveScoreAvg12(): BatchSetStuScores err = %s\n", err.Error())
        return err
    }

    return flow.Next(kis.ActionDataReuse)
}

登入後複製

SaveScoreAvg12()透過綁定的Connector將資料儲存到Redis中,使用的是Connector中設定的key。最後將來源資料透傳給下一個函數。

函數(E):PrintStuAvgScore

faas_stu_score_avg_print.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
)

type PrintStuAvgScoreIn struct {
    serialize.DefaultSerialize
    StuId    int     `json:"stu_id"`
    AvgScore float64 `json:"avg_score"`
}

func PrintStuAvgScore(ctx context.Context, flow kis.Flow, rows []*PrintStuAvgScoreIn) error {
    fmt.Printf("->Call Func PrintStuAvgScore, in Flow[%s]\n", flow.GetName())

    for _, row := range rows {
        fmt.Printf("stuid: [%+v], avg score: [%+v]\n", row.StuId, row.AvgScore)
    }

    return flow.Next()
}

登入後複製

PrintStuAvgScore() 列印目前學生的平均分數。

函數(L):LoadScoreAvg12

faas_load_score_avg_1_2.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
    "github.com/go-redis/redis/v8"
    "strconv"
)

type LoadStuScoreIn struct {
    serialize.DefaultSerialize
    StuScore3
}

type LoadStuScoreOut struct {
    serialize.DefaultSerialize
    StuScore3
}

func GetStuScoresByStuId(ctx context.Context, conn kis.Connector, stuId int) (float64, error) {

    var rdb *redis.Client

    // Get Redis Client
    rdb = conn.GetMetaData("rdb").(*redis.Client)

    // make key
    key := conn.GetConfig().Key + strconv.Itoa(stuId)

    // get data from redis
    result, err := rdb.HGetAll(ctx, key).Result()
    if err != nil {
        return 0, err
    }

    // get value
    avgScoreStr, ok := result["avg_score"]
    if !ok {
        return 0, fmt.Errorf("avg_score not found for stuId: %d", stuId)
    }

    // parse to float64
    avgScore, err := strconv.ParseFloat(avgScoreStr, 64)
    if err != nil {
        return 0, err
    }

    return avgScore, nil
}

func LoadScoreAvg12(ctx context.Context, flow kis.Flow, rows []*LoadStuScoreIn) error {
    fmt.Printf("->Call Func LoadScoreAvg12\n")

    conn, err := flow.GetConnector()
    if err != nil {
        fmt.Printf("LoadScoreAvg12(): GetConnector err = %s\n", err.Error())
        return err
    }

    for _, row := range rows {
        stuScoreAvg1_2, err := GetStuScoresByStuId(ctx, conn, row.StuId)
        if err != nil {
            fmt.Printf("LoadScoreAvg12(): GetStuScoresByStuId err = %s\n", err.Error())
            return err
        }

        out := LoadStuScoreOut{
            StuScore3: StuScore3{
                StuId:      row.StuId,
                Score3:     row.Score3,
                AvgScore12: stuScoreAvg1_2, // avg score of score1 and score2 (load from redis)
            },
        }

        // commit result
        _ = flow.CommitRow(out)
    }

    return flow.Next()
}

登入後複製

LoadScoreAvg12() reads the average score of score_1 and score_2 from Redis through the linked resource Redis of the bound Connector using the key configured in the Connector. It then sends the source data from upstream, along with the newly read average score of score1 and score2, to the next layer.

Function(C): AvgStuScore3

faas_stu_score_avg_3.go

package main

import (
    "context"
    "fmt"
    "github.com/aceld/kis-flow/kis"
    "github.com/aceld/kis-flow/serialize"
)

type AvgStuScore3In struct {
    serialize.DefaultSerialize
    StuScore3
}

type AvgStuScore3Out struct {
    serialize.DefaultSerialize
    StuScoreAvg
}

func AvgStuScore3(ctx context.Context, flow kis.Flow, rows []*AvgStuScore3In) error {
    fmt.Printf("->Call Func AvgStuScore3\n")

    for _, row := range rows {

        out := AvgStuScore3Out{
            StuScoreAvg: StuScoreAvg{
                StuId:    row.StuId,
                AvgScore: (float64(row.Score3) + row.AvgScore12*2) / 3,
            },
        }

        // Submit result data
        _ = flow.CommitRow(out)
    }

    return flow.Next()
}

登入後複製

AvgStuScore3() recalculates the average score of three scores by adding score_3 and the average score of score_1 and score_2, resulting in the final average score avg_score.

Register FaaS & CaaSInit/CaaS (Register Function/Connector)

main.go

func init() {
    // Register functions
    kis.Pool().FaaS("VerifyStu", VerifyStu)
    kis.Pool().FaaS("AvgStuScore12", AvgStuScore12)
    kis.Pool().FaaS("SaveScoreAvg12", SaveScoreAvg12)
    kis.Pool().FaaS("PrintStuAvgScore", PrintStuAvgScore)
    kis.Pool().FaaS("LoadScoreAvg12", LoadScoreAvg12)
    kis.Pool().FaaS("AvgStuScore3", AvgStuScore3)

    // Register connectors
    kis.Pool().CaaSInit("Score12Cache", InitScore12Cache)
}

登入後複製

Main Process

main.go

package main

import (
    "context"
    "github.com/aceld/kis-flow/file"
    "github.com/aceld/kis-flow/kis"
    "sync"
)

func RunFlowCalStuAvgScore12(ctx context.Context, flow kis.Flow) error {

    // Commit data
    _ = flow.CommitRow(`{"stu_id":101, "score_1":100, "score_2":90}`)
    _ = flow.CommitRow(`{"stu_id":102, "score_1":100, "score_2":80}`)

    // Run the flow
    if err := flow.Run(ctx); err != nil {
        return err
    }

    return nil
}

func RunFlowCalStuAvgScore3(ctx context.Context, flow kis.Flow) error {

    // Commit data
    _ = flow.CommitRow(`{"stu_id":101, "score_3": 80}`)
    _ = flow.CommitRow(`{"stu_id":102, "score_3": 70}`)

    // Run the flow
    if err := flow.Run(ctx); err != nil {
        return err
    }

    return nil
}

func main() {
    ctx := context.Background()

    // Load Configuration from file
    if err := file.ConfigImportYaml("conf/"); err != nil {
        panic(err)
    }

    var wg sync.WaitGroup
    wg.Add(2)

    go func() {
        // Run flow1 concurrently
        defer wg.Done()

        flow1 := kis.Pool().GetFlow("CalStuAvgScore12")
        if flow1 == nil {
            panic("flow1 is nil")
        }

        if err := RunFlowCalStuAvgScore12(ctx, flow1); err != nil {
            panic(err)
        }
    }()

    go func() {
        // Run flow2 concurrently
        defer wg.Done()

        flow2 := kis.Pool().GetFlow("CalStuAvgScore3")
        if flow2 == nil {
            panic("flow2 is nil")
        }

        if err := RunFlowCalStuAvgScore3(ctx, flow2); err != nil {
            panic(err)
        }
    }()

    wg.Wait()

    return
}
登入後複製

Two Goroutines are launched concurrently to execute Flow1 and Flow2, calculating the final average scores for student 101 and student 102.

Execution Results

===> Call Connector InitScore12Cache
Connected to Redis: PONG
Add FlowRouter FlowName=CalStuAvgScore12
===> Call Connector InitScore12Cache
Connected to Redis: PONG
Add FlowRouter FlowName=CalStuAvgScore3
->Call Func VerifyStu
->Call Func VerifyStu
->Call Func AvgStuScore12
->Call Func LoadScoreAvg12
->Call Func SaveScoreAvg12
->Call Func PrintStuAvgScore, in Flow[CalStuAvgScore12]
stuid: [101], avg score: [95]
stuid: [102], avg score: [90]
->Call Func AvgStuScore3
->Call Func PrintStuAvgScore, in Flow[CalStuAvgScore3]
stuid: [101], avg score: [90]
stuid: [102], avg score: [83.33333333333333]
登入後複製

In Flow[CalStuAvgScore3], we observe the final computed average scores for scores 1, 2, and 3.


Author: Aceld
GitHub: https://github.com/aceld

KisFlow Open Source Project Address: https://github.com/aceld/kis-flow

Document: https://github.com/aceld/kis-flow/wiki


Part1-OverView
Part2.1-Project Construction / Basic Modules
Part2.2-Project Construction / Basic Modules
Part3-Data Stream
Part4-Function Scheduling
Part5-Connector
Part6-Configuration Import and Export
Part7-KisFlow Action
Part8-Cache/Params Data Caching and Data Parameters
Part9-Multiple Copies of Flow
Part10-Prometheus Metrics Statistics
Part11-Adaptive Registration of FaaS Parameter Types Based on Reflection


Case1-Quick Start
Case2-Flow Parallel Operation
Case3-Application of KisFlow in Multi-Goroutines
Case4-KisFlow in Message Queue (MQ) Applications

以上是案例(二)-KisFlow-Golang流即時計算-流並行運算的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板