首頁 > 後端開發 > Python教學 > 使用 Topc 進行主題建模:Dreyfus、AI 和 Wordclouds

使用 Topc 進行主題建模:Dreyfus、AI 和 Wordclouds

王林
發布: 2024-07-18 04:36:21
原創
520 人瀏覽過

使用 Python 從 PDF 提取見解:綜合指南

此腳本演示了用於處理 PDF、提取文字、標記句子以及透過視覺化執行主題建模的強大工作流程,專為高效和富有洞察力的分析而定制。

庫概述

  • os:提供與作業系統互動的功能。
  • matplotlib.pyplot:用於在 Python 中建立靜態、動畫和互動式視覺化。
  • nltk:自然語言工具包,一套用於自然語言處理的函式庫和程式。
  • pandas:資料操作與分析函式庫。
  • pdftotext:用於將 PDF 文件轉換為純文字的庫。
  • re:提供正規表示式匹配操作。
  • seaborn:基於matplotlib的統計資料視覺化函式庫。
  • nltk.tokenize.sent_tokenize:NLTK 函數將字串標記為句子。
  • top2vec:主題建模和語義搜尋的函式庫。
  • wordcloud:用於從文字資料建立詞雲的函式庫。

初始設定

導入模組

import os
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pdftotext
import re
import seaborn as sns
from nltk.tokenize import sent_tokenize
from top2vec import Top2Vec
from wordcloud import WordCloud
from cleantext import clean
登入後複製

接下來,請確保下載 punkt tokenizer:

nltk.download('punkt')
登入後複製

文字規範化

def normalize_text(text):
    """Normalize text by removing special characters and extra spaces,
    and applying various other cleaning options."""

    # Apply the clean function with specified parameters
    cleaned_text = clean(
        text,
        fix_unicode=True,  # fix various unicode errors
        to_ascii=True,  # transliterate to closest ASCII representation
        lower=True,  # lowercase text
        no_line_breaks=False,  # fully strip line breaks as opposed to only normalizing them
        no_urls=True,  # replace all URLs with a special token
        no_emails=True,  # replace all email addresses with a special token
        no_phone_numbers=True,  # replace all phone numbers with a special token
        no_numbers=True,  # replace all numbers with a special token
        no_digits=True,  # replace all digits with a special token
        no_currency_symbols=True,  # replace all currency symbols with a special token
        no_punct=False,  # remove punctuations
        lang="en",  # set to 'de' for German special handling
    )

    # Further clean the text by removing any remaining special characters except word characters, whitespace, and periods/commas
    cleaned_text = re.sub(r"[^\w\s.,]", "", cleaned_text)
    # Replace multiple whitespace characters with a single space and strip leading/trailing spaces
    cleaned_text = re.sub(r"\s+", " ", cleaned_text).strip()

    return cleaned_text
登入後複製

PDF文字擷取

def extract_text_from_pdf(pdf_path):
    with open(pdf_path, "rb") as f:
        pdf = pdftotext.PDF(f)
    all_text = "\n\n".join(pdf)
    return normalize_text(all_text)
登入後複製

句子標記化

def split_into_sentences(text):
    return sent_tokenize(text)
登入後複製

處理多個文件

def process_files(file_paths):
    authors, titles, all_sentences = [], [], []
    for file_path in file_paths:
        file_name = os.path.basename(file_path)
        parts = file_name.split(" - ", 2)
        if len(parts) != 3 or not file_name.endswith(".pdf"):
            print(f"Skipping file with incorrect format: {file_name}")
            continue

        year, author, title = parts
        author, title = author.strip(), title.replace(".pdf", "").strip()

        try:
            text = extract_text_from_pdf(file_path)
        except Exception as e:
            print(f"Error extracting text from {file_name}: {e}")
            continue

        sentences = split_into_sentences(text)
        authors.append(author)
        titles.append(title)
        all_sentences.extend(sentences)
        print(f"Number of sentences for {file_name}: {len(sentences)}")

    return authors, titles, all_sentences
登入後複製

將資料儲存到 CSV

def save_data_to_csv(authors, titles, file_paths, output_file):
    texts = []
    for fp in file_paths:
        try:
            text = extract_text_from_pdf(fp)
            sentences = split_into_sentences(text)
            texts.append(" ".join(sentences))
        except Exception as e:
            print(f"Error processing file {fp}: {e}")
            texts.append("")

    data = pd.DataFrame({
        "Author": authors,
        "Title": titles,
        "Text": texts
    })
    data.to_csv(output_file, index=False, quoting=1, encoding='utf-8')
    print(f"Data has been written to {output_file}")
登入後複製

載入停用詞

def load_stopwords(filepath):
    with open(filepath, "r") as f:
        stopwords = f.read().splitlines()
    additional_stopwords = ["able", "according", "act", "actually", "after", "again", "age", "agree", "al", "all", "already", "also", "am", "among", "an", "and", "another", "any", "appropriate", "are", "argue", "as", "at", "avoid", "based", "basic", "basis", "be", "been", "begin", "best", "book", "both", "build", "but", "by", "call", "can", "cant", "case", "cases", "claim", "claims", "class", "clear", "clearly", "cope", "could", "course", "data", "de", "deal", "dec", "did", "do", "doesnt", "done", "dont", "each", "early", "ed", "either", "end", "etc", "even", "ever", "every", "far", "feel", "few", "field", "find", "first", "follow", "follows", "for", "found", "free", "fri", "fully", "get", "had", "hand", "has", "have", "he", "help", "her", "here", "him", "his", "how", "however", "httpsabout", "ibid", "if", "im", "in", "is", "it", "its", "jstor", "june", "large", "lead", "least", "less", "like", "long", "look", "man", "many", "may", "me", "money", "more", "most", "move", "moves", "my", "neither", "net", "never", "new", "no", "nor", "not", "notes", "notion", "now", "of", "on", "once", "one", "ones", "only", "open", "or", "order", "orgterms", "other", "our", "out", "own", "paper", "past", "place", "plan", "play", "point", "pp", "precisely", "press", "put", "rather", "real", "require", "right", "risk", "role", "said", "same", "says", "search", "second", "see", "seem", "seems", "seen", "sees", "set", "shall", "she", "should", "show", "shows", "since", "so", "step", "strange", "style", "such", "suggests", "talk", "tell", "tells", "term", "terms", "than", "that", "the", "their", "them", "then", "there", "therefore", "these", "they", "this", "those", "three", "thus", "to", "todes", "together", "too", "tradition", "trans", "true", "try", "trying", "turn", "turns", "two", "up", "us", "use", "used", "uses", "using", "very", "view", "vol", "was", "way", "ways", "we", "web", "well", "were", "what", "when", "whether", "which", "who", "why", "with", "within", "works", "would", "years", "york", "you", "your", "suggests", "without"]
    stopwords.extend(additional_stopwords)
    return set(stopwords)
登入後複製

從主題中過濾停用詞

def filter_stopwords_from_topics(topic_words, stopwords):
    filtered_topics = []
    for words in topic_words:
        filtered_topics.append([word for word in words if word.lower() not in stopwords])
    return filtered_topics
登入後複製

詞雲生成

def generate_wordcloud(topic_words, topic_num, palette='inferno'):
    colors = sns.color_palette(palette, n_colors=256).as_hex()
    def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
        return colors[random_state.randint(0, len(colors) - 1)]

    wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate(' '.join(topic_words))
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.title(f'Topic {topic_num} Word Cloud')
    plt.show()
登入後複製

主要執行

file_paths = [f"/home/roomal/Desktop/Dreyfus-Project/Dreyfus/{fname}" for fname in os.listdir("/home/roomal/Desktop/Dreyfus-Project/Dreyfus/") if fname.endswith(".pdf")]

authors, titles, all_sentences = process_files(file_paths)

output_file = "/home/roomal/Desktop/Dreyfus-Project/Dreyfus_Papers.csv"
save_data_to_csv(authors, titles, file_paths, output_file)

stopwords_filepath = "/home/roomal/Documents/Lists/stopwords.txt"
stopwords = load_stopwords(stopwords_filepath)

try:
    topic_model = Top2Vec(
        all_sentences,
        embedding_model="distiluse-base-multilingual-cased",
        speed="deep-learn",
        workers=6
    )
    print("Top2Vec model created successfully.")
except ValueError as e:
    print(f"Error initializing Top2Vec: {e}")
except Exception as e:
    print(f"Unexpected error: {e}")

num_topics = topic_model.get_num_topics()
topic_words, word_scores, topic_nums = topic_model.get_topics(num_topics)
filtered_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_topic_words):
    print(f"Topic {i}: {', '.join(words)}")

keywords = ["heidegger"]
topic_words, word_scores, topic_scores, topic_nums = topic_model.search_topics(keywords=keywords, num_topics=num_topics)
filtered

_search_topic_words = filter_stopwords_from_topics(topic_words, stopwords)

for i, words in enumerate(filtered_search_topic_words):
    generate_wordcloud(words, topic_nums[i])

for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)
登入後複製

Topic Wordcloud

減少主題數量

reduced_num_topics = 5
topic_mapping = topic_model.hierarchical_topic_reduction(num_topics=reduced_num_topics)

# Print reduced topics and generate word clouds
for i in range(reduced_num_topics):
    topic_words = topic_model.topic_words_reduced[i]
    filtered_words = [word for word in topic_words if word.lower() not in stopwords]
    print(f"Reduced Topic {i}: {', '.join(filtered_words)}")
    generate_wordcloud(filtered_words, i)
登入後複製

Hierarchical Topic Reduction Wordcloud

以上是使用 Topc 進行主題建模:Dreyfus、AI 和 Wordclouds的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板