首頁 科技週邊 人工智慧 高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽

高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽

Aug 05, 2024 pm 08:15 PM
nerf 理論

高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
請注意,上述動圖完全是由多張照片渲染出來的 3D 場景。人類很難發現它們的破綻。

那讓我們一起看看,這種場景是怎麼實現的。

網格和點是最常見的三維場景表示法,因為它們是顯式的,非常適合基於 GPU/CUDA 的快速光柵化。相較之下,最新的神經輻射場(NeRF)方法建立在連續場景表徵的基礎上,通常使用體積光線渲染優化多層感知器(MLP),對捕捉到的場景進行新視角合成。雖然這些方法的連續性有助於最佳化,但渲染所需的隨機取樣成本很高,而且會產生雜訊。

來自法國蔚藍海岸大學的研究者引入了一種新方法,能夠結合這兩種方法的優點:3D 高斯表徵有著SOAT 視覺質量,並且在訓練時間上也進行了最佳化,而基於tile 的拋雪球演算法(tile-based splatting)在幾個資料集上以1080p 解析度實現SOTA 即時渲染。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
論文地址:https://huggingface.co/papers/2308.04079
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
研究團隊下目標:對多張照片拍攝的場景進行即時渲染,並在典型真實場景中實現時間最優化。先前,Fridovich-Kei 等人提出的方法雖然實現了快速訓練,但難以達到目前 SOTA NeRF 方法所獲得的視覺質量,而後者需要長達 48 小時的訓練時間。還有研究提出快速但品質較低的輻射場方法,可以根據場景實現互動式渲染(每秒 10-15 幀),但這種方法無法實現高解析度下的即時渲染。

接下來,我們來看看本文是如何實現的。

方法

團隊的解決方案主要由三個部分組成。

第一,引入 3D 高斯作為一種靈活而富有表現力的場景表徵。輸入與 NeRF 方法類似,即使用結構 - 運動(SfM)校準像機,並且使用稀疏點雲初始化 3D 高斯集合,點雲來自 SfM 過程。此外,研究只用 SfM 點作為輸入就能獲得高品質的結果。需要注意的是,對於 NeRF 合成資料集,即使採用隨機初始化,本文方法也能獲得高品質的結果。研究表明,3D 高斯是一個很好的選擇。

第二,最佳化 3D 高斯屬性,即 3D 位置、不透明度?、各向異性協方差和球諧波(SH)係數。最佳化過程產生了一個相當緊湊、非結構化和精確的場景表徵。

第三,即時渲染解決方案,研究使用快速 GPU 排序演算法。不過,由於採用了3D 高斯表徵,可以在遵循可見度排序的情況下進行各向異性拼接,這要歸功於排序和?- blending— 並通過跟踪所需的盡可能多排序拼接的遍歷,實現快速準確的向後傳遞。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
方法概覽

綜上,本文做出了以下貢獻:
🎜 >
  • 引入各向異性3D 高斯作為輻射場的高品質、非結構化表徵;
  • 3D高斯屬性的最佳化方法,與自適應密度控制交織在一起,為捕捉到的場景創建高品質的表徵;
  • 針對GPU 的快速可微分渲染方法,該方法具有可視性感知功能,允許各向異性拼接和快速反向傳播,以實現高品質的新視圖合成。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
實驗

高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽

高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽

圖顯示了本文的方法與以往方法效果的比較。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
場景自上而下依序為來自Mip-NeRF360 資料集的自行車、花園、櫃檯和房間;來自深度混合資料集的遊戲室(更多比較請閱讀原文)。圖中把不同方法產生的顯著差異已經標出,如自行車的輻條、花園遠處的房屋玻璃、鐵籃子的桿子以及玩具小熊。
可以觀察出,本文的方法相比以往的方法在細節上更具優勢。 高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽影片中可以看到更明顯的差異

除此之外,在圖6 中我們可以看到,即使迭代7K 次(∼ 5 分鐘),本文方法也能很好地捕捉列車的細節。在迭代 30K 次(∼35 分鐘)時,背景偽影明顯減少。對於花園場景,差異幾乎不明顯,7K 次迭代(∼8 分鐘)已經是非常高的品質了。

研究團隊採用Mip-NeRF360 建議的方法,將資料集分為訓練/ 測試兩部分,每隔8 張照片進行測試,以便進行一致且有意義的比較,從而產生誤差指標,並使用文獻中最常使用的標準PSNR、L-PIPS 和SSIM 指標,詳細資料見表1。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
表 1 展現了透過三個資料集計算得出的新方法與先前的工作相比的定量評估。標有“†”的結果直接採用了原論文,其他結果均為該實驗團隊的實驗結果。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
合成 NeRF 的 PSNR 分數。可以看到本文方法在多數情況下分數都較好,甚至達到最優。
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
消融實驗
高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽
消融實驗
啲>消融實驗
所做的不同貢獻和演算法選擇分離出來,並建立了一組實驗來衡量它們的效果。對演算法的以下幾個方面進行了測試:從 SfM 初始化、緻密化策略、各向異性協方差、允許無限數量的斑塊具有梯度以及球諧波的使用。下表總結了每種選擇的定量效果。
我們來看看更直觀的效果。 使用 SfM 點初始化會產生更好的效果。 Clone 和Split 兩種情況下的消融緻密化策略限制接受漸變的點的數量,對視覺品質影響是顯著的。左圖:限制接收梯度的 10 個高斯點。右圖:本文的完整方法。 想了解更多詳細內容,請閱讀原文。

以上是高畫質影片竟不是真的,幾張照片渲染的3D場景讓你難辨真偽的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1659
14
CakePHP 教程
1416
52
Laravel 教程
1310
25
PHP教程
1258
29
C# 教程
1232
24
突破傳統缺陷檢測的界限,\'Defect Spectrum\'首次實現超高精度豐富語意的工業缺陷檢測。 突破傳統缺陷檢測的界限,\'Defect Spectrum\'首次實現超高精度豐富語意的工業缺陷檢測。 Jul 26, 2024 pm 05:38 PM

在現代製造業中,精準的缺陷檢測不僅是確保產品品質的關鍵,更是提升生產效率的核心。然而,現有的缺陷檢測資料集常常缺乏實際應用所需的精確度和語意豐富性,導致模型無法辨識特定的缺陷類別或位置。為了解決這個難題,由香港科技大學廣州和思謀科技組成的頂尖研究團隊,創新地開發了「DefectSpectrum」資料集,為工業缺陷提供了詳盡、語義豐富的大規模標註。如表一所示,相較於其他工業資料集,「DefectSpectrum」資料集提供了最多的缺陷標註(5438張缺陷樣本),最細緻的缺陷分類(125個缺陷類別

英偉達對話模式ChatQA進化到2.0版本,上下文長度提到128K 英偉達對話模式ChatQA進化到2.0版本,上下文長度提到128K Jul 26, 2024 am 08:40 AM

開放LLM社群正是百花齊放、競相爭鳴的時代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等許多表現優良的模型。但是,相較於以GPT-4-Turbo為代表的專有大模型,開放模型在許多領域仍有明顯差距。在通用模型之外,也有一些專精關鍵領域的開放模型已被開發出來,例如用於程式設計和數學的DeepSeek-Coder-V2、用於視覺-語言任務的InternVL

數百萬晶體資料訓練,解決晶體學相位問題,深度學習方法PhAI登Science 數百萬晶體資料訓練,解決晶體學相位問題,深度學習方法PhAI登Science Aug 08, 2024 pm 09:22 PM

編輯|KX時至今日,晶體學所測定的結構細節和精度,從簡單的金屬到大型膜蛋白,是任何其他方法都無法比擬的。然而,最大的挑戰——所謂的相位問題,仍然是從實驗確定的振幅中檢索相位資訊。丹麥哥本哈根大學研究人員,開發了一種解決晶體相問題的深度學習方法PhAI,利用數百萬人工晶體結構及其相應的合成衍射數據訓練的深度學習神經網絡,可以產生準確的電子密度圖。研究表明,這種基於深度學習的從頭算結構解決方案方法,可以以僅2埃的分辨率解決相位問題,該分辨率僅相當於原子分辨率可用數據的10%到20%,而傳統的從頭算方

GoogleAI拿下IMO奧數銀牌,數學推理模型AlphaProof面世,強化學習 is so back GoogleAI拿下IMO奧數銀牌,數學推理模型AlphaProof面世,強化學習 is so back Jul 26, 2024 pm 02:40 PM

對AI來說,奧數不再是問題了。本週四,GoogleDeepMind的人工智慧完成了一項壯舉:用AI做出了今年國際數學奧林匹克競賽IMO的真題,並且距拿金牌僅一步之遙。上週剛結束的IMO競賽共有六道賽題,涉及代數、組合學、幾何和數論。谷歌提出的混合AI系統做對了四道,獲得28分,達到了銀牌水準。本月初,UCLA終身教授陶哲軒剛剛宣傳了百萬美元獎金的AI數學奧林匹克競賽(AIMO進步獎),沒想到7月還沒過,AI的做題水平就進步到了這種水平。 IMO上同步做題,做對了最難題IMO是歷史最悠久、規模最大、最負

PRO | 為什麼基於 MoE 的大模型更值得關注? PRO | 為什麼基於 MoE 的大模型更值得關注? Aug 07, 2024 pm 07:08 PM

2023年,幾乎AI的每個領域都在以前所未有的速度進化,同時,AI也不斷地推動著具身智慧、自動駕駛等關鍵賽道的技術邊界。在多模態趨勢下,Transformer作為AI大模型主流架構的局面是否會撼動?為何探索基於MoE(專家混合)架構的大模型成為業界新趨勢?大型視覺模型(LVM)能否成為通用視覺的新突破? ……我們從過去的半年發布的2023年本站PRO會員通訊中,挑選了10份針對以上領域技術趨勢、產業變革進行深入剖析的專題解讀,助您在新的一年裡為大展宏圖做好準備。本篇解讀來自2023年Week50

為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 Jul 25, 2024 am 06:42 AM

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

準確率達60.8%,浙大基於Transformer的化學逆合成預測模型,登Nature子刊 準確率達60.8%,浙大基於Transformer的化學逆合成預測模型,登Nature子刊 Aug 06, 2024 pm 07:34 PM

編輯|KX逆合成是藥物發現和有機合成中的關鍵任務,AI越來越多地用於加快這一過程。現有AI方法性能不盡人意,多樣性有限。在實踐中,化學反應通常會引起局部分子變化,反應物和產物之間存在很大重疊。受此啟發,浙江大學侯廷軍團隊提出將單步逆合成預測重新定義為分子串編輯任務,迭代細化目標分子串以產生前驅化合物。並提出了基於編輯的逆合成模型EditRetro,該模型可以實現高品質和多樣化的預測。大量實驗表明,模型在標準基準資料集USPTO-50 K上取得了出色的性能,top-1準確率達到60.8%。

Nature觀點,人工智慧在醫學上的測試一片混亂,該怎麼做? Nature觀點,人工智慧在醫學上的測試一片混亂,該怎麼做? Aug 22, 2024 pm 04:37 PM

編輯|ScienceAI基於有限的臨床數據,數百種醫療演算法已被批准。科學家們正在討論由誰來測試這些工具,以及如何最好地進行測試。 DevinSingh在急診室目睹了一名兒科患者因長時間等待救治而心臟驟停,這促使他探索AI在縮短等待時間中的應用。 Singh利用了SickKids急診室的分診數據,與同事們建立了一系列AI模型,用於提供潛在診斷和推薦測試。一項研究表明,這些模型可以加快22.3%的就診速度,將每位需要進行醫學檢查的患者的結果處理速度加快近3小時。然而,人工智慧演算法在研究中的成功只是驗證此

See all articles