首頁 後端開發 Python教學 使用 LlamaIndex 和 Ollama 的高級索引技術:第 2 部分

使用 LlamaIndex 和 Ollama 的高級索引技術:第 2 部分

Aug 14, 2024 pm 10:34 PM

Advanced Indexing Techniques with LlamaIndex and Ollama: Part 2

使用 LlamaIndex 和 Ollama 的高級索引技術:第 2 部分

程式碼可以在這裡找到:GitHub - jamesbmour/blog_tutorials:

歡迎回到我們對 LlamaIndex 和 Ollama 的深入研究!在第 1 部分中,我們介紹了設定和使用這些強大工具進行高效資訊檢索的要點。現在,是時候探索高級索引技術了,它將把您的文件處理和查詢能力提升到一個新的水平。

一、簡介

在繼續之前,讓我們先快速回顧一下第 1 部分的要點:

  • 設定 LlamaIndex 和 Ollama
  • 建立基本索引
  • 執行簡單查詢

在這一部分中,我們將深入研究不同的索引類型,學習如何自訂索引設定、管理多個文件以及探索進階查詢技術。最後,您將對如何利用 LlamaIndex 和 Ollama 執行複雜的資訊檢索任務有一個深入的了解。

如果您尚未設定環境,請務必參閱第 1 部分,以了解有關安裝和設定 LlamaIndex 和 Ollama 的詳細說明。

2. 探索不同的指數型

LlamaIndex 提供各種索引類型,每種索引類型都針對不同的用例量身定制。讓我們探討四種主要類型:

2.1 列表索引

列表索引是 LlamaIndex 中最簡單的索引形式。它是文字區塊的有序列表,非常適合簡單的用例。

from llama_index.core import ListIndex, SimpleDirectoryReader, VectorStoreIndex
from dotenv import load_dotenv
from llama_index.llms.ollama import  Ollama
from llama_index.core import Settings
from IPython.display import Markdown, display
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.ollama import OllamaEmbedding
import chromadb
from IPython.display import HTML
# make markdown display text color green for all cells
# Apply green color to all Markdown output
def display_green_markdown(text):
    green_style = """
    <style>
    .green-output {
        color: green;
    }
    </style>
    """
    green_markdown = f'<div class="green-output">{text}</div>'
    display(HTML(green_style + green_markdown))


# set the llm to ollama
Settings.llm = Ollama(model='phi3', base_url='http://localhost:11434',temperature=0.1)

load_dotenv()

documents = SimpleDirectoryReader('data').load_data()
index = ListIndex.from_documents(documents)

query_engine = index.as_query_engine()
response = query_engine.query("What is llama index used for?")

display_green_markdown(response)
登入後複製

優點:

  • 建立簡單快速
  • 最適合小型文件集

缺點:

  • 大型資料集效率較低
  • 語意理解有限

2.2 向量存儲索引

向量儲存索引利用嵌入來建立文件的語意表示,從而實現更複雜的搜尋。

# Create Chroma client
chroma_client = chromadb.EphemeralClient()

# Define collection name
collection_name = "quickstart"

# Check if the collection already exists
existing_collections = chroma_client.list_collections()

if collection_name in [collection.name for collection in existing_collections]:
    chroma_collection = chroma_client.get_collection(collection_name)
    print(f"Using existing collection '{collection_name}'.")
else:
    chroma_collection = chroma_client.create_collection(collection_name)
    print(f"Created new collection '{collection_name}'.")

# Set up embedding model
embed_model = OllamaEmbedding(
    model_name="snowflake-arctic-embed",
    base_url="http://localhost:11434",
    ollama_additional_kwargs={"prostatic": 0},
)

# Load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# Set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)

# Create query engine and perform query
query_engine = index.as_query_engine()
response = query_engine.query("What is llama index best suited for?")
display_green_markdown(response)

登入後複製

這種索引類型在語意搜尋和可擴展性方面表現出色,非常適合大型資料集。

2.3 樹索引

樹索引分層組織訊息,有利於結構化資料。

from llama_index.core import TreeIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader('data').load_data()
tree_index = TreeIndex.from_documents(documents)
query_engine = tree_index.as_query_engine()
response = query_engine.query("Explain the tree index structure.")
display_green_markdown(response)
登入後複製

樹索引對於具有自然層次結構的資料特別有效,例如組織結構或分類法。

2.4 關鍵字表索引

關鍵字表索引針對基於關鍵字的高效檢索進行了最佳化。

from llama_index.core import KeywordTableIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader('data/paul_graham').load_data()
keyword_index = KeywordTableIndex.from_documents(documents)
query_engine = keyword_index.as_query_engine()
response = query_engine.query("What is the keyword table index in llama index?")
display_green_markdown(response)
登入後複製

此索引類型非常適合需要根據特定關鍵字快速尋找的場景。

3. 自訂索引設定

3.1 分塊策略

有效的文字分塊對於索引效能至關重要。 LlamaIndex 提供了多種分塊方法:

from llama_index.core.node_parser import SimpleNodeParser

parser = SimpleNodeParser.from_defaults(chunk_size=1024)

documents = SimpleDirectoryReader('data').load_data()
nodes = parser.get_nodes_from_documents(documents)
print(nodes[0])
登入後複製

嘗試不同的分塊策略,以找到上下文保留和查詢效能之間的最佳平衡。

3.2 嵌入模型

LlamaIndex 支援各種嵌入模型。以下是如何使用 Ollama 進行嵌入:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.ollama import OllamaEmbedding

embed_model = OllamaEmbedding(
    model_name="snowflake-arctic-embed",
    base_url="http://localhost:11434",
    ollama_additional_kwargs={"mirostat": 0},
)
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
query_engine = index.as_query_engine()
response = query_engine.query("What is an embedding model used for in LlamaIndex?")
display_green_markdown(response)
登入後複製

嘗試不同的 Ollama 模型並調整參數,以針對您的特定用例最佳化嵌入品質。

4. 處理多個文檔

4.1 建立多文檔索引

LlamaIndex 簡化了從不同類型的多個文件建立索引的過程:

txt_docs = SimpleDirectoryReader('data/paul_graham').load_data()
web_docs = SimpleDirectoryReader('web_pages').load_data()
data = txt_docs  + web_docs
all_docs = txt_docs  + web_docs
index = VectorStoreIndex.from_documents(all_docs)

query_engine = index.as_query_engine()
response = query_engine.query("How do you create a multi-document index in LlamaIndex?")
display_green_markdown(response)
登入後複製

4.2 跨文檔查詢

要有效地查詢多個文檔,您可以實施相關性評分並管理上下文邊界:

from llama_index.core import QueryBundle
from llama_index.core.query_engine import RetrieverQueryEngine

retriever = index.as_retriever(similarity_top_k=5)
query_engine = RetrieverQueryEngine.from_args(retriever, response_mode="compact")
query = QueryBundle("How do you query across multiple documents?")
response = query_engine.query(query)
display_green_markdown(response)
登入後複製

5. 結論與後續步驟

在 LlamaIndex 和 Ollama 系列的第二部分中,我們探索了高級索引技術,包括:

  • 不同的索引類型及其用例
  • 自訂索引設定以獲得最佳效能
  • 處理多個文件和跨文件查詢

如果您想支持我或給我買啤酒,請隨時加入我的 Patreon jamesbmour

以上是使用 LlamaIndex 和 Ollama 的高級索引技術:第 2 部分的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1677
14
CakePHP 教程
1431
52
Laravel 教程
1334
25
PHP教程
1280
29
C# 教程
1257
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

科學計算的Python:詳細的外觀 科學計算的Python:詳細的外觀 Apr 19, 2025 am 12:15 AM

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles