首頁 後端開發 Python教學 了解您的數據:探索性數據分析 (EDA) 的要點。

了解您的數據:探索性數據分析 (EDA) 的要點。

Aug 18, 2024 am 06:12 AM

Understanding your data: The Essentials of Exploratory Data Analysis (EDA).

收集並儲存資料後,需要對其進行分析以獲得對其有意義的理解。正是由於這個原因,探索性數據分析(EDA)發揮了作用。顧名思義,我們正在「探索」數據,即獲得數據的總體概述。

收集的資料可以是文字、影片或圖像,通常以非結構化方式儲存。您很少會找到 100% 乾淨的數據,即沒有任何異常情況。此外,資料可能採用各種格式,例如 Excel、CSV(逗號分隔值)、Json、Parquet 等

在資料世界中,EDA 也可能稱為資料操作資料清理。業界從業人員強調清理資料以刪除「垃圾」的重要性,因為這可能會對結果和預測產生負面影響。結構化資料通常採用表格格式,可以使用多種技術和工具(如 Excel、Power BI、SQL)進行分析,但我們將專注於 Python 來進行說明。

使用 Python 進行 EDA
Python 程式語言是 EDA 中最廣泛的工具之一,因為它具有多功能性,可以跨多個行業使用,包括金融、教育、醫療保健、採礦、酒店等。
內建函式庫,即 Pandas 和 NumPy 在這方面非常有效,並且可以跨領域工作(無論是使用 Anaconda/Jupyter Notebook、Google Collab 還是 Visual Studio 等 IDE)

以下是執行 EDA 時可執行的常見步驟和程式碼行:

首先,您將匯入操作/分析所需的 python 庫:

將 pandas 匯入為 pd
將 numpy 匯入為 np

其次,載入資料集
df = pd.read_excel('檔案路徑')

注意:df 是將表格資料​​轉換為資料框的標準函數。

載入後,您可以使用以下程式碼預覽資料:
df.head()

這將顯示資料集的前 5 行
或者,您可以簡單地運行 df ,它將顯示整個資料集的選定幾行(頂部和底部)以及其中的所有列。

第三,使用以下方式了解所有資料類型:
df.info()

注意:資料型別包括整數(整數)、浮點數(小數)或物件(質性資料/描述性文字)。

在此步驟中,建議使用以下方式取得資料的總統計資料:
df.describe()

這將為您提供平均值、眾數、標準差、最大值/最小值和四分位數等統計量

第四,使用以下方法辨識資料集中是否存在空值:
df.isnull()

然後可以檢查重複項(重複條目)
df.duplicated()

EDA 的其他關鍵方面是檢查資料集中的各個變數如何相互關聯(相關性)及其分佈
相關性可以是正的,也可以是負的,範圍是-1到1。其代碼是:

df.corr()

註:相關性數值接近1表示強正相關,接近-1表示強負相關

分佈檢查對稱不對稱資料的情況,以及資料的偏度,它可以是常態、二項式、伯努利或泊松。

總之,探索性資料分析是更好地理解資料的重要過程。它可以實現更好的可視化和模型構建。

以上是了解您的數據:探索性數據分析 (EDA) 的要點。的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1655
14
CakePHP 教程
1414
52
Laravel 教程
1307
25
PHP教程
1255
29
C# 教程
1228
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

您可以在2小時內學到多少python? 您可以在2小時內學到多少python? Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:探索其主要應用程序 Python:探索其主要應用程序 Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles